
Revision management and change analysis

of vector data models

DOCTORAL DISSERTATION

Máté András Cserép

Supervisor: Dr. habil. István Elek

Eötvös Loránd University

Faculty of Informatics

Doctoral School of Informatics

Head of the doctoral school: Prof. Dr. Erzsébet Csuhaj Varjú

Doctoral program: Information Systems

Head of the doctoral program: Prof. Dr. András Benczúr

DOI: 10.15476/ELTE.2024.010

Budapest, 2024

https://doi.org/10.15476/ELTE.2024.010

Contents

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Thesis structure . 2

1.2 Authorship statement . 3

2 Revision management of vector data models 4

2.1 Overview of revision control models and methods 5

2.2 General revision control model on geospatial data 8

2.2.1 The baseline model . 8

2.2.2 Data storage . 10

2.2.3 Linear control of revisions . 10

2.2.4 Branching and merging possibilities 12

2.2.5 Distributed revision control . 13

2.2.6 Applications in cloud environment 14

2.3 Implementation of geospatial revision control 15

2.3.1 The AEGIS framework . 15

2.3.2 Revision control in AEGIS . 17

2.4 Results and performance analysis . 19

2.4.1 Storage efficiency . 19

2.4.2 Computation performance . 21

2.5 Conclusions . 23

3 Change analysis of buildings and vegetation in airborne point clouds 24

3.1 Related work and background . 25

3.1.1 Classification of land cover . 26

3.1.2 Building segmentation . 27

i

CONTENTS

3.1.3 Individual tree segmentation . 28

3.1.4 Change detection in point clouds . 28

3.1.5 Change detection of buildings . 30

3.1.6 Change detection of vegetation . 30

3.2 Dataset description . 31

3.2.1 Study area . 34

3.3 Methodology of building change detection 35

3.3.1 Threshold filtering . 35

3.3.2 Detecting objects . 36

3.3.3 Changeset filtering . 37

3.3.4 Border reconstruction . 39

3.3.5 Algorithm summary . 39

3.3.6 Aggregation overview . 40

3.4 Methodology of vegetation change detection 41

3.4.1 Producing canopy height models . 42

3.4.2 Low-pass filtering . 44

3.4.3 Elimination of low points . 45

3.4.4 Collecting local maximum points . 45

3.4.5 Interpolation of nodata points . 47

3.4.6 Tree crown segmentation . 47

3.4.7 Morphological filtering . 50

3.4.8 Cluster pairing . 51

3.4.9 Difference of tree heights . 54

3.4.10 Difference between tree volumes . 54

3.5 Implementation . 55

3.5.1 The PointCloudTools library . 55

3.5.2 Architecture of the Buildings module 58

3.5.3 Architecture of the Vegetation module 59

3.6 Results and performance . 62

3.6.1 Desktop environment . 62

3.6.2 Distributed computing . 65

3.7 Visualization of results . 68

3.8 Validation and discussion . 70

3.8.1 Validation of building detection . 70

3.8.2 Validation of vegetation detection 72

3.9 Conclusions . 75

ii

CONTENTS

4 Recognition of railroad infrastructure in MLS point clouds 78

4.1 Related work and background . 79

4.1.1 Segmentation of overhead cables and rails on open track 79

4.1.2 Segmentation of railway infrastructure in complex environments . 81

4.1.3 Examination of the structure gauge 82

4.2 Dataset description . 83

4.3 Methodology of infrastructure recognition 85

4.3.1 Railroad fragmentation . 86

4.3.2 Cable recognition . 87

4.3.3 Rail recognition . 90

4.4 Results of infrastructure recognition . 94

4.4.1 Fragmentation results . 94

4.4.2 Object recognition results and verification 95

4.5 Fault analysis of railroad infrastructure . 97

4.5.1 Structure gauge collision analysis . 97

4.5.2 Contact cable stagger analysis . 100

4.5.3 Railway bedding error analysis . 102

4.6 Implementation . 102

4.7 Conclusions . 103

5 Summary 105

5.1 Results . 106

A Building change detection workflow image collection 108

B Vegetation change detection workflow image collection 111

Bibliography 116

iii

List of Figures

2.1 Example of revision control models . 6

2.2 Example workflow with 4 operations . 7

2.3 The extended Simple Feature Access data model (UML notation) 8

2.4 Revision graph of the example workflow 9

2.5 Example of revision control models . 12

2.6 Integration of raster imagery to geometry in the AEGIS framework 16

2.7 Processing model of the AEGIS framework 17

2.8 Implementation model of the revision control system 18

2.9 Storage efficiency comparison of revision control tools 21

2.10 Speed performance comparison of different methods 22

3.1 Difference between DEM, DSM and DTM 26

3.2 Data acquisition periods for the Actueel Hoogtebestand Nederland dataset . . 32

3.3 Tile boundaries of the complete AHN dataset 33

3.4 Satellite image of the TU Delft campus area with indicated study locations 34

3.5 Unfiltered altimetry changes between AHN-2 and AHN-3 measurements 36

3.6 Areas potentially containing objects by comparing AHN DSM and DTM . 37

3.7 DTM-DSM comparison based object extraction followed by noise filtering 38

3.8 Cluster filter applied to ignore modifications on an small scale 38

3.9 Final results produced through border reconstruction of buildings 39

3.10 The complete overview of the algorithm workflow 40

3.11 Neighbourhood level aggregated overview of the city of Delft 41

3.12 Flowchart of the vegetation detection algorithm 42

3.13 Satellite image of the study area . 43

3.14 AHN-2 canopy height model . 43

3.15 Low-pass filtering performed on AHN-2 . 45

3.16 Elimination of low points performed on AHN-2 46

3.17 Gap filling interpolation performed on AHN-2 46

3.18 The four types of possible cluster merges 48

3.19 Tree crown segmentation performed on AHN-2 49

iv

LIST OF FIGURES

3.20 Morphological opening performed on AHN-2 50

3.21 Detected paired and unpaired clusters . 53

3.22 Height differences of paired clusters . 53

3.23 UML class diagram of the operation model of PointCloudTools 57

3.24 UML class diagram of the CloudTools.Buildings module 58

3.25 UML class diagram of the CloudTools.Vegetation module 61

3.26 Height differences of paired clusters in the TU Delft Campus sample territory 65

3.27 Web interface of the visualization . 69

3.28 Interactive tool for detailed, vegetation level altimetry change analysis . . 69

3.29 Reasons of possible false positive change detections in buildings 72

3.30 Example false positive and false negative change detections in vegetation 74

4.1 Key components of railroad infrastructure 80

4.2 Data acquisition with the Riegl VMX-450 MMS sensor 83

4.3 Satellite view of the Szabadszállás - Kiskőrös sample dataset 84

4.4 Satellite view of the Szentgotthárd neighbourhood sample dataset 84

4.5 Workflow diagram of the processing steps 85

4.6 Mid-steps of the 2D Hough transform method 88

4.7 Flowchart of the developed rail recognition algorithm 93

4.8 Selected curved segments to test the fragmentation process 94

4.9 Curve detection result . 95

4.10 Verification area for cable and rail object recognition 96

4.11 Combined visual result of the cable and rail track detection 97

4.12 The international G1 and the domestic G2 structure gauges in Hungary . . 98

4.13 Structure gauge clearance polygon . 99

4.14 Structure gauge validation result . 99

4.15 Stagger of the contact wire viewed from the top 100

4.16 Stagger checking pipeline . 100

4.17 Stagger checking result . 101

4.18 Examples of anomalies of the railway bedding detectable by remote sensing 102

4.19 Result of railway bedding deformation analysis 102

v

List of Tables

2.1 Speed performance comparison against other tools 23

3.1 Description of study locations at the TU Delft campus area 35

3.2 Lenovo Y700 hardware configuration . 62

3.3 Workflow execution time on a desktop computer with 3 parallel processes 62

3.4 Basic data and runtime information of the sample territories 63

3.5 Results of tree segmentation and different pairing methods 64

3.6 Results of volume calculation for different epochs 64

3.7 SURFsara LISA node hardware specification 66

3.8 Workflow execution time on the SURFsara LISA cluster 67

3.9 Low budget desktop PC hardware configuration for Hadoop cluster . . . 68

3.10 Validation results with TOP10NL used as reference data 71

3.11 Total and average absolute volume change for correctly detected buildings 71

3.12 Comparison of results for various tree segmentation methods 75

4.1 Runtime results of various curve detection methods for rail fragmentation 95

4.2 Accuracy of the object recognition algorithms 96

vi

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. István Elek, for always

being available to answer my questions, offer guidance and support throughout my doc-

toral studies. His expertise and encouragement have been instrumental in shaping my

research and developing my skills as a scholar.

I would like to offer my heartfelt gratitude to Dr. Roderik Lindenbergh, who served as

my co-advisor during my EIT Digital mobility at Delft University of Technology. His ex-

pertise, enthusiasm, and guidance have been of immeasurable value in focusing my doc-

toral dissertation around the laser ranging and scanning technology. I am deeply thankful

for his guidance, which has greatly enriched my research and professional skills.

I would like to extend my sincere appreciation to my previous master thesis supervi-

sor, Roberto Giachetta, for his invaluable support and guidance during the early years of

my doctoral studies. His mentorship, encouragement, and insightful feedback have been

crucial in shaping my research interests and academic pursuits.

I would like to thank my colleagues for their collaboration and encouragement

throughout my doctoral journey and for creating a stimulating and supportive aca-

demic environment. I am glad I worked together with Anett Fekete and Péter Hudoba,

I learned a lot from these cooperations and they also contributed to my dissertation.

Besides, I am thankful to the master students who chose me as their thesis advisor in

the Geoinformatics Laboratory of the faculty. Working together has been incredibly in-

teresting, and I have thoroughly enjoyed being your advisor. Our collaboration has not

only benefited you as students, but it has also significantly enhanced my mentoring skills.

Through our interactions, discussions, and the challenges we encountered, I have learned

a great deal and grown as an advisor.

I am grateful to Csaba Bajnóci and Zoltán Németh, experts at the Hungarian State

Railways, for generously sharing their knowledge and providing valuable information

in the railway infrastructure domain, required for Chapter 4.

I would also like to express my gratitude to the members of the PhD Students’ Union,

for providing me with unforgettable memories during my time in graduate school. Their

camaraderie, friendship, and support have made my academic journey more enjoyable

vii

Acknowledgements

and fulfilling. I am thankful for the opportunities to collaborate, learn, and grow with

this inspiring community of scholars.

Finally, I would like to thank my family and friends for their unwavering love, en-

couragement, and support. Their belief in me has sustained me through the ups and

downs of graduate school and made this achievement possible. I would like to thank

my dear friends and fellow PhD students Csaba Bálint, Róbert Bán, Gábor Horváth,

Réka Kovács, Ákos Rudas and Tekla Tóth. Your presence in my life has been a constant

source of encouragement and inspiration throughout this endeavor. Your belief in my

abilities and genuine interest in my research have truly made a difference. I would also

like to extend my heartfelt thanks to Roxána Provender for her continuous support and

friendship. Your willingness to lend an ear and offer insightful feedback have meant a

great deal to me.

Thank you all for being part of this important milestone in my life.

viii

Chapter 1

Introduction

The evolution and spreading of data capturing methods ranging from simple GNSS

devices [7] to large scale imaging equipment (including very high resolution and hyper-

spectral cameras, LiDAR, etc.) resulted in an exponential growth in the acquired amount

of spatial data, maintained by companies and organizations [8]. Also, to manage the large

amount of information and the sharing between multiple organizations and systems, dis-

tributed systems and cloud computing are nowadays common tools [9].

Revision control is useful and sometimes essential tool in the maintenance of changing

datasets, most notably software source code. Current revision control software focus pri-

marily on textual information as no method is available for the efficient storage of mod-

ifications on any binary content [10]. However, the need for revision control emerges in

several data centric environments, such as geographic information systems (GIS) [11, 12].

Beside this issue of space efficiency, retrieving semantic information regarding the alter-

ations applied between selected revisions is also an unsolved problem for most cases.

The advancement of remote sensing and Light Detection and Ranging (LiDAR) in the

last few decades [8] offered a technology capable of rapid high resolution collection of

surface altimetry data through airborne and terrestrial laser scanning [13]. This devel-

opment allowed us not only to recognize buildings, infrastructure and vegetation solely

on raw, remotely acquired point clouds, on digital surface models or by the utilization

of supplementary aerial or satellite images, but also to identify their modifications. This

provides an automated, therefore more cost efficient and faster solution in contrast to

expensive and time-consuming field surveys and manual data evaluation. Alterations

in the urban or more generally in the built-up areas can be caused by either planned,

human-made changes like construction, demolition, modifications or by natural disas-

ters like earthquakes. Detecting these changes is essential for government agencies and

authorities on several fields ranging from land use through urban planning and civil en-

gineering to disaster management. Meanwhile, preserving vegetation in urban surround-

1

1. Introduction

ings and in general has growing importance in regards of the serious issue of climate

change. Detecting and monitoring changes in the vegetation can supply valuable results,

which can be utilized by experts in city planning and environmental protection. Change

detection of vegetation has become a highly important issue in our days since the alter-

ation of the ecosystem affects urban life, such as living conditions and urban planning.

Expansion of urban area and industrialization both have a great impact on vegetation

growth, therefore it is important to continuously monitor and analyze the changes.

Monitoring the condition of railway infrastructure is essential for maintaining safety

standards and preventing accidents. The regular inspections required for this task are

still typically carried out in many countries with costly and time-consuming on-site hu-

man inspections. LiDAR point clouds collected by mobile laser scanning (MLS) already

proved to be suitable for recognizing important railroad infrastructure elements, such

as cables and the rail tracks [14, 15]. However, the computational requirement for pro-

cessing large data sets like these often extremely dense point clouds is still a challenge

nowadays, resulting in longer execution time than practically applicable [16].

In my doctoral dissertation I discuss how the alterations and possible multiple ver-

sions of these vast amounts of spatial datasets can be effectively managed, meanwhile

preserving crucial semantic information regarding the editing operations. I present so-

lutions on the object recognition of buildings, infrastructure and vegetation and their

change detection in multitemporal spatial datasets. The dissertation focuses on vector

data models and especially point cloud datasets.1

1.1 Thesis structure

The rest of the dissertation is structured as follows. Chapter 2 presents a solution

for the efficient management of geospatial data using operation-based revision control.

Beside the theoretical model, it is also implemented as part of the AEGIS geospatial

framework, a generic library for geographic and remote sensing data processing.

In Chapter 3 I propose a methodology to automatically evaluate altimetry change de-

tection of massive multitemporal datasets and create a robust algorithm for building and

tree segmentation, targeting especially large urban and suburban areas, but applicable

generally to any kind of area. As example measurements, the multi epoch nation-wide

Dutch altimetry archives were selected for demonstration, as these contain data points

on the magnitude of trillions, resulting in several terabytes of data.

1While compared to other vector data models, point clouds may contain significantly more geometries,
they could be still well represented with the Simple FeatureAccess (SFA) vector data standard, as presented in
Section 2.2.1.

2

1. Introduction

Chapter 4 presents a novel automated data-driven method for railroad cable and rail-

track recognition in rural areas based on LiDAR point clouds. As part of the research,

a robust fragmenting method was also implemented to create successive straight sec-

tions of rail tracks. This facilitates and simplifies further detection in the point cloud, as

it can already be assumed that the given section of track is straight during processing.

In addition, the fragmentation of the point cloud also provides an opportunity for high-

level parallelization. This is required, as even the sample LiDAR dataset (provided by

the Hungarian State Railways) used consists of over 20 kilometers of rural railway area

and over 2 billion data points. The results are used for automated error recognition in the

infrastructure, which is illustrated by example problems.

Finally, Chapter 5 concludes the dissertation and the results.

1.2 Authorship statement

I hereby certify that the results presented in this dissertation were achieved during

my own research in cooperation with my advisors István Elek and Roderik Lindenbergh.

This dissertation concentrates on the research results published in [4, 1, 2, 5, 3]. During my

graduate studies – regarding the theses comprising the dissertation – I collaborated with

Roberto Giachetta [4], Anett Fekete [2] and Péter Hudoba [5], and some implementations

were partially carried out by my supervised students [3]. Although the results presented

below are claimed as mine, I use the plural form in the text for readability.

3

Chapter 2

Revision management of vector data

models

Usually, multiple versions of the same data exist due to application of several process-

ing operations starting with preprocessing and ranging through several modification and

evaluation. For instance, government agencies control national information in several

categories (land use, transportation, urbanization, etc.) with data being regularly modi-

fied due to changes [17]. Therefore, to manage data efficiently, a spatial revision control

system is required that meets the requirements of spatial systems, i.e., processes binary

data with limited storage requirements due to modification, and is also compatible with

distributed data storage.

Revision control systems are widely used tools in software development, primarily

aimed at managing versions of software source code during implementation. Since the

1980s, many systems have been developed, recently supporting distributed storage of

items aiming on efficient storage and retrieval of data [10]. With the increasing impor-

tance of cloud computing in recent years, software development tools and revision con-

trol software have also made use of the new environment [18].

Since the source code is written in plain text format, these systems are generally us-

able for any text document. There are also solutions for text-based storage of complex

objects [19]. However, these systems are not optimized for storing versions of binary data

because their format is too general to track changes within the binary code. Some revision

control systems – for example, Git1 – provide limited support for binary content [20].

In Geographic Information Systems several file formats exist for storing geospatial

data, with most formats being binary. Only a handful of data formats have a textual

representation, including Well-known Text (WKT), GML, and GeoJSON. However, there

are some open issues related to document size and raster data support. Although some

1http://git-scm.com

4

http://git-scm.com
http://git-scm.com

2. Revision management of vector data models

new solutions for geospatial data revision control have emerged, including GitSpatial2

and GeoGig3 (formerly GeoGit), these systems tend to focus on specific domains. No

global solution has been proposed for all types of geospatial data and possible operations

performed on the data.

Treating spatial information as binary data has several major drawbacks compared to

textual revision control. First, all semantic information about the changes made, such as

the spatial operations performed, is deleted. Collecting and providing detailed knowl-

edge about all changes between selected revisions is a particularly important expectation

of a version control system. Second, even if only a small portion of the given geospatial

dataset has been changed, a single editing operation may result in the modification of a

larger portion of the binary formatted data, unnecessarily increasing the required storage

space.

The demand for revision control systems in GIS software capable of exploiting the pe-

culiarities of spatial operations emerged beginning in the early 1990s [11]. Besides several

attempts to use the concept of version control in standalone GIS solutions [12], the idea of

DBMS 4-integrated systems [21, 22] was also explored in collaboration with the database

community. However, no sufficient solution has been implemented in contemporary GIS

software to meet the previously defined requirements for compactness of storage and

persistence of semantic information.

In this chapter, I present a revision control concept for geospatial datasets that has

been successfully implemented as part of the AEGIS geospatial framework [23], a generic

library for processing geographic and remote sensing data. The system utilizes operation

metadata as modification deltas to enable space-efficient changeset handling, and uses a

generalized data model that enables uniform handling of vector and raster data.

2.1 Overview of revision control models and methods

Keeping a complete copy of every version of a document can easily take up a sig-

nificant amount of storage space, even with a relatively short version history. As a com-

mon solution, most modern revision control tools spare storage space by computing and

persisting only the difference (delta) between successive revisions, and keeping only the

complete state of a few special versions – such as the first or last (head) revisions.

The two main categories for creating the changeset between versions are state-based

and operation-based deltas. An example of both models in the case of text documents is

shown in Figure 2.1.

2http://gitspatial.com
3http://geogig.org
4Database management system

5

http://gitspatial.com
http://geogig.org
http://gitspatial.com
http://geogig.org

2. Revision management of vector data models

(a) State-based (b) Operation-based

Figure 2.1: Example of revision control models

In the state-based case, the general method is to decompose the document into

smaller, more manageable pieces. This is because comparing two versions of a docu-

ment as a whole would introduce various difficulties in creating, applying, or merging

deltas. For text documents, a natural and commonly used practice is to break up a file into

lines, ignoring the special structure (syntax and semantics) of the content. Compared to

this unstructured data processing, another approach is to analyze the document stati-

cally (partially) and decompose it down into a structured or semi-structured form. This

latter method reduces the occurrence of possible unresolvable merge conflicts [24], but

also truncates the manageable content of the revision control system to a predefined for-

mat. While these techniques provide poor storage efficiency for unstructured binary data,

they can be used for tracking changes in textual geospatial data (like GitSpatial han-

dles GeoJSON), and structured models are also feasible for specific binary file types (like

GeoGig parses Shapefiles).

In contrast, for operation-based deltas, the actual operations performed between two

successive versions are stored in the revision control system, not the changes in state.

While this approach also has advantages in managing textual data [25], it is distinguished

by the fact that it does not require any special knowledge of the managed data format on

part of the revision control system to create or merge changesets. As an application in

the graphical domain, Chen, Wei, and Chang [26] presented a revision control system

using the operation-based model for the image processing application GIMP. The core

idea is to store graphical operations using a directed acyclic graph (DAG), where each

node contains a performed editing operation. This representation is suitable for nonlinear

revision control and does not require storage of the state of the changed image.

Different applications of revision control may require different models. Operation-

based revision control is preferable to state-based revision control if the following condi-

tions are met.

6

2. Revision management of vector data models

• The amount of data affected by a single change is generally large. In this case, state-

based deltas require large storage space, while the size of operation-based deltas is

independent of the size of the affected data. For example, an image operation such

as histogram equalization may change all the pixels of the image, so in the case of

the state-based model, the entire image must be stored again.

• The data is heterogeneous and cannot be divided into small parts where the modi-

fication of the individual parts can be monitored. The state-based model is most ef-

fective when small fragments of data can be identified as the location of the change.

Large pieces of data do not allow proper identification of changes and also result in

duplicate storage of unchanged data.

• Query of previous revisions is performed infrequently. Frequent queries would lead

to performance problems as operations must be re-executed to view each version.

In general, merging state deltas can be done faster than executing operations, so the

state-based model provides a performance advantage for revision queries.

• Both data and operations can be managed through a single, high-level model. This

is required to enable consistent handling and storage of operation deltas and correct

identification of information stored in binary content.

For these reasons, operation-based model is more favorable to revision control of

geospatial data. The data are heterogeneous, are stored as binary content, and even if

operations modify only a smaller portion of the dataset, a larger segment of the binary

state could be affected. Previous revisions are not required often (as with software source

code), but revision history must still be maintained and frequently looked up.

Figure 2.2: Example workflow with 4 operations

An example of a geospatial workflow consisting of four operations is shown in

Figure 2.2. First, the remotely sensed image is registered for the specified reference sys-

tem. Second, the image is enhanced using histogram equalization. Third, the region of

interest is defined by the intersection with a given polygon. Finally, thresholding is ap-

plied to the area for classification.

7

2. Revision management of vector data models

2.2 General revision control model on geospatial data

The core concept of our solution described in [4] was inspired by the idea presented

by Chen, Wei, and Chang [26]. In order to create an expansively applicable model, the

representation of geospatial data and operations was designed to have the least possible

requirements.

2.2.1 The baseline model

The data model simply assumes that all spatial data types in the system directly or

indirectly inherit or implement a common ancestor class or interface. A well-known con-

formant example of the minimalist specification mentioned earlier is the Simple Feature

Access (SFA) standard5 [27] by the Open Geospatial Consortium (OGC)6. The SFA is an

object-relational mapping for geospatial data that provides abstract geometry as a com-

mon base for spatial objects, including collections. The standard only addresses the han-

dling of vector data, but can be easily extended to support other features. For example,

support for raster imagery can be introduced by specializing a RasterPolygon type from

the Polygon type, as seen in Figure 2.3. These specialized polygons (referred to as raster

polygons) can contain raster data inside the geometry. By using this abstraction, the data

source is irrelevant to the revision control system, while the model still complies with the

SFA standard, as it only extends, but does not modify it.

Figure 2.3: The extended Simple Feature Access data model (UML notation)

5Also an ISO standard: ISO /IEC 19125:2004
6http://www.opengeospatial.org

8

http://www.opengeospatial.org
http://www.opengeospatial.org

2. Revision management of vector data models

Geospatial operations can be defined as mappings between geometry objects and rep-

resented as transformation objects. The objects can be described by the method applied

and the values of the arguments (if any). This concept was introduced in the OGC Spatial

Referencing by Coordinates (SRC) standard [28] for coordinate transformations, but can be

easily generalized to all types of spatial operations, including raster image processing. In

this approach, only the descriptors of the operation need to be stored as operation deltas,

which is compact data and independent of the size of the actual transformation object.

For example, in the case of the workflow presented in Section 2.1, histogram equal-

ization and intersection require only the source geometries (geomi) and no additional

arguments. Thresholding requires the predefined threshold (th), while registration re-

quires the spatial reference system identifier (SRID) and the geographic coordinates of

the image corners (coordi) in addition to the source geometries (see Equation 2.1).

op1 = (registration, geom1, SRID, coord1, ..., coord4)

op2 = (hist. equalization, geom1)

op3 = (intersection, geom1, geom2)

op4 = (thresholding, geom1, th) (2.1)

An operation-based revision control system does not require specific knowledge of

the spatial transformations previously performed (as described in Section 2.1), so no fur-

ther requirement for the model of operations is necessary.

Figure 2.4: Revision graph of the example workflow

The core structure used for storing version history is the directed acyclic revision graph.

In this representation, each node symbolizes the corresponding version and contains the

ordered sequence of operations performed between the current and the previous revi-

sion, while the edges denote the semantic relationships in the version system. A possible

graph for the example workflow is shown in Figure 2.4, where the rectangles denote ge-

ometry storage and the circles denote operation delta storage. The first revision contains

the initial geometries, while further revisions are computed using the specified operation,

9

2. Revision management of vector data models

as shown in Equation 2.2.

revision1 = (image, polygon)
∀i ∈ 2..5 revisioni = (revisioni−1, opi−1) (2.2)

2.2.2 Data storage

The high-level data and operation model enables the usage of all SFA compliant stor-

age methods as source. This includes vector file formats, such as Shapefiles, GML or

GeoJSON, as they can be simply converted to geometry format. The extension for han-

dling of raster data also enables image file formats, such as GeoTIFF. Further more, other

storage mechanisms can also be used, such as spatial databases. Thus the model is not

only applicable for file based storage of revisions, but can be used on any spatial data

source.

As described in Section 2.2.1, operation deltas are stored using descriptors that can

be serialized into a compact text or binary representation. Even more, the descriptors can

be aggregated to the geometries as metadata. Since most spatial formats allow metadata

to be stored alongside the geometry, these formats can easily be used to store the modi-

fication history of a geometry. Shapefile, for example, stores descriptive information in a

dBase file. Although specialized software is required to deserialize the revision history,

the stored geometries can be read by most geodata managing software.

2.2.3 Linear control of revisions

Our revision control system uses a natural object-oriented approach for representa-

tion, where versions are embodied by revision descriptor objects. These descriptors con-

tain meta-information about the versions (e.g., the identifier and predecessor revision),

while the change records comprising the executed editing operations are stored and can

be retrieved independently for each version. This representation architecturally separates

the metadata and the deltas, thus accelerating several revision management algorithms

where the latter information is irrelevant. The identifier of a revision descriptor object

serves as its unique ID in the version control system. The type of the identifier has been

abstracted to support various concepts, like sequential numbering with integers or hash

values as version identifiers.

The version descriptors provide a low-level logical representation of the nodes and

edges in the revision graph. Directly querying and modifying the graph at this level of

abstraction would not only be tedious and inconvenient, but would also neglect the as-

pects of cost and time efficiency. As a higher level, we introduce the revision model with

comprehensive functionalities covering the entire revision graph. This includes the abil-

10

2. Revision management of vector data models

ity to retrieve arbitrary version descriptors or submit a new revision in the model with

consistency verification.

The states of spatial data managed by the revision control system can be interpreted

as sets of geometric objects. Deltas between two versions may include the addition of new

or the deletion of existing geometry objects from the state set, in addition to the required

transformation operations.

Using the above described revision model in linear version control systems, it is a

simple and straightforward task to construct the cumulative changeset between any two

revisions. However, to update a particular user’s working copy to an earlier version, the

system must reverse the editing operations performed to the current state. While the re-

versal of state-based deltas is easy to construct, the operations may be irreversible. In

such cases, it is the responsibility of the revision management system to support alterna-

tive approaches to handling the problem. There are several possible fallback mechanisms

to solve this problem, such as restoring the selected revision from the other end of the ver-

sion history or exceptionally storing the pre-transformed state of the affected geometry

object in the original revision changeset in case of irreversible operations.

In an operation-based revision control system like the designed model, it has already

been shown that only the initial states of the geometries need to be stored, further changes

are represented with transformation objects. For efficiency, suitably selected revisions can

also be snapshotted to store the entire geometry set so that it can be retrieved without

having to reapply operations. This feature provides some options for balancing storage

space and time efficiency. A typical application of this method is to take a snapshot of the

head revision of the main branch – or each branch – in a version management system and

store reverse directed (inverse) deltas in the changesets. In such models, the fresh – much

more frequently checked out – revisions can be obtained with excellent performance,

which is why many existing revision control tools (e.g., subversion7) already use a similar

methodology.

An example query is presented in Figure 2.5. Assuming that revisionn is stored as

snapshot, revisionn+4 is the head revision, and additional revisions using operation

deltas, the query method for revisionn+3 depends on the reversibility of the final op-

eration. If the operation is reversible, the revision can be reconstructed using a reverse

delta from the head revision (Figure 2.5a). Otherwise, the revision is reconstructed from

revisionn by execution of multiple operations (Figure 2.5b).

7http://subversion.tigris.org/

11

http://subversion.tigris.org/
http://subversion.tigris.org/

2. Revision management of vector data models

(a) Query using reverse delta (b) Query using forward deltas

Figure 2.5: Example of revision control models

2.2.4 Branching and merging possibilities

A key aspect of most modern revision control tools is to support concurrent collabora-

tion among multiple team members by using a nonlinear version history with the ability

to create branches and optionally merge them later. Our model conforms to the nonlin-

ear paradigm by allowing multiple revision descriptors to refer to a common predecessor.

With this extension to the architecture presented in Section 2.2.1, branching itself becomes

a simple task.

However, developing an efficient and intelligent branch merging algorithm is com-

plicated for textual state-based revision control systems because several handling issues

require special attention. The two most important problems are the need to detect and

eliminate duplicate, identical modifications in the branches, and the user interaction usu-

ally required for conflicts where the same atomic unit of data is changed differently in the

two branches, making automatic resolution impossible. Merging in an operation-based

revision management system for spatial data is an even more complex task, since the

changesets contain not only a single, but multiple editing operations per branch for a ge-

ometry object – the atomic unit in the model. Therefore, the corresponding order of the

alterations must be defined to resolve the conflict, for which user involvement is usually

unavoidable.

Support for merging also requires some slight changes to the revision descriptor ob-

jects. Since a descriptor declares a single version as its predecessor (and the changeset

defines the modifications between these two revisions), the information about which

other version(s) have been merged into the current revision is lost. Therefore, the iden-

tifier of all merged versions must be stored in each revision descriptor, since this meta-

information may be important or helpful to human users.

12

2. Revision management of vector data models

2.2.5 Distributed revision control

As cloud computing and distributed data storage have become a common and pop-

ular research topic, most third-generation version control tools [29] – such as Git or

Mercurial8 – have also abandoned the centralized paradigm and instead implement dis-

tributed data management and revision control. Whereas in classic server-client imple-

mentations only a particular server node holds the entire version history and clients per-

sist only the status of the current working copy, these systems replicate the revision his-

tory on each machine. Users of the system form a peer-to-peer network in which they are

able to pull or push revisions from one node to another. This approach provides higher

availability of the service and better distribution of processing and load [30].

The revision control model presented in this section only defines an inner architecture

that does not impose any constraints on the centralization or distribution of the system.

Therefore, it is supported to create a higher-level software layer on top of the model

that is responsible for network communication and collaboration between repositories,

as shown in Section 2.3.2.

Synchronization of individual repositories can be performed using one of the follow-

ing methods.

• Data-based synchronization of deltas, snapshots, and head revision. As with the state-

based model, this method requires the transfer of large amounts of data and the re-

placement of remote content with new content. Therefore, the method is primarily

dependent on the bandwidth between the two repositories. Updating the remote

repository can be done quickly.

• Operation-based synchronization. This method only requires the transfer of operation

deltas and is therefore more applicable in low bandwidth environments. Based on

the operation deltas, the remote repository can rebuild any snapshot and the head

revision. Therefore, this method requires additional execution of operations.

The advantage of this approach is that rebuilding revisions does not have to be

done immediately. Rebuilding can be delayed until the next time the repository is

queried.

The method of synchronization does not have to be specified in advance. Both meth-

ods can be supported by the system, and based on the current environmental conditions,

the appropriate method or even a hybrid approach (e.g. transfer of the head revision,

but reconstruction of the snapshots) can be automatically selected by the system at each

synchronization.

8http://mercurial.selenic.com

13

http://mercurial.selenic.com
http://mercurial.selenic.com

2. Revision management of vector data models

Special forms of repositories can also be formed that are used only as remote sources,

such as the “bare” repository in the case of Git. When using operation based synchroniza-

tion, no rebuilding is required, since revisions are reconstructed from the client repository

anyway. This approach saves both storage space and execution time.

2.2.6 Applications in cloud environment

Cloud computing has become an active research area in recent years, promoting a

paradigm shift for organizations and enterprises to use cloud services for their informa-

tion infrastructure. Cloud computing provides virtually unlimited opportunities for data

analytics, which is also required due to datasets becoming enormous and complex (com-

monly referred to as Big data) [31]. Managing geospatial and remote sensing data in the

cloud is also a widespread topic [32]. Unfortunately, existing cloud-based GIS software

do not utilize revision control.

As explained in Section 2.2.1, the presented general revision control model is applica-

ble to all compliant data storage solutions, including distributed file systems and cloud

databases. For example, the industry standard Apache Hadoop [33] framework relies on a

distributed file system called HDFS [34]. Managing complex geospatial and remote sens-

ing data in Hadoop is already challenging [35].

The benefits of revision control in the cloud can be leveraged more broadly. For ex-

ample, Vrable, Savage, and Voelker [36] use state-based deltas to enable more efficient

storage of data backup in the cloud. The application of operation-based revision control

may also be beneficiary for the following cases.

• Data recovery: Cloud environments are typically built with commodity hardware

that has limited reliability, resulting in disk or network switch failures. The environ-

ment overcomes this by replicating data on different nodes. For example, Hadoop

has a default replication factor of 3. Unfortunately, replication is disk space con-

suming tactic. Some alternatives have been presented, such as discretized streams

[37], but these are not suitable for GIS data.

The operation based revision control model also provides a solution for data re-

covery without replication. As long as different snapshots and revisions are located

on different disks, the failure of one disk will only result in the loss of one revi-

sion. By using another snapshot and the operation deltas, the lost revision can be

recreated again. This requires only the operation metadata to be securly stored us-

ing replication, and possibly the initial revision (if operations are not reversible).

In this way, the models enable high data availability with much less storage space

requirements.

14

2. Revision management of vector data models

• Data transfer: Another potential problem with cloud computing is the performance

bottleneck caused by data transfer between nodes in the cloud. Especially for large,

complex binary data such as remote sensing imagery, where the files cannot be

partitioned into multiple blocks as this would result in information loss and unin-

terpretable data.

In terms of operation based revision control, the situation may arise where the head

revision is on a remote node while a previous revision is on the local node. If the

head revision is required, it can either be transferred to the local node or rebuilt on

the local node using the previous revision. By monitoring operation performance

and data transfer rates, the system can easily determine which method would result

in the head revision being available on the local node more quickly.

2.3 Implementation of geospatial revision control

To prove the usability of the proposed revision control model, the implementation

has been carried out as part of the AEGIS geospatial framework, as the system meets

all the requirements described in Section 2.2.1, including a general abstract data model

based on SFA and operation support providing operation metadata [38]. The architecture

of the system is presented in Section 2.3.1 in terms of data and operation management.

Section 2.3.2 goes into implementation details of revision control within AEGIS.

The implementation of AEGIS and the revision control system is done using the .NET

Core framework, due to the extensive capabilities and ease of use of this development

platform and also the success of .NET based GIS software products such as DotSpatial9

and SharpMap10.

2.3.1 The AEGIS framework

The AEGIS geospatial framework was initially developed for educational and re-

search purposes and is currently used as a learning tool for computer science stu-

dents. It is based on well-known standards and state-of-the-art programming method-

ologies. During development, attention was paid to adaptability and extensibility. The

component-based infrastructure allows the separation of working fields, and the inter-

changeability of data models, methods and algorithms. Each component is stored in a

platform-independent class library, implemented using .NET Standard in C#. The source

code is publicly available on GitHub11, and is released under the ECL 2.0 license.

9https://github.com/DotSpatial/DotSpatial
10https://github.com/SharpMap/SharpMap
11https://github.com/GISLab-ELTE/aegis-origin

15

https://github.com/DotSpatial/DotSpatial
https://github.com/SharpMap/SharpMap
https://github.com/GISLab-ELTE/aegis-origin
https://github.com/DotSpatial/DotSpatial
https://github.com/SharpMap/SharpMap
https://github.com/GISLab-ELTE/aegis-origin

2. Revision management of vector data models

AEGIS supports both vector data and raster imagery. Based on the SFA standard, all

spatial data is considered as a form of geometry with a reference system specified accord-

ing to the SRC standard. Multiple realizations of the abstract geometries are enabled by

using the abstract factory pattern and the inversion of control containers [39] are utilized to

handle multiple factories.

To enable support for remotely sensed imagery, spectral geometries containing raster

datasets are introduced as a subtype of geometry (see Figure 2.6). Using factory exten-

sions, these geometries can be handled in the same manner as regular vector data, but in

the case of image operations, the contained raster dataset is also processed. Rasters have

multiple representations, including integer and floating point number formats. Rasters

can also be transformed to topology graph representation and combined with vector

data [40].

Figure 2.6: Integration of raster imagery to geometry in the AEGIS framework

The processing module contains the processing algorithms and the execution envi-

ronment. The algorithms are objects described with a meta-descriptor system based on the

Identified Object scheme, as a generalization of the coordinate operation model of the OGC

SRC standard. The meta-descriptor system provides information for operation methods

(version, source, execution conditions) and parameters. New methods can be added or

existing methods can be extended to support new functionality or input data. The varia-

tion of a method is managed by versioning.

Operations deal with the abstract model of geospatial data and therefore do not de-

pend on realization or representation. Operations can also result in geometries that are

not precomputed, but are computed when requested in a lazy manner.

16

2. Revision management of vector data models

The execution environment is deals with monitoring and cataloging methods and op-

erations based on the meta descriptors. This metadata allows the environment to validate

and optimize the execution of the method. The heart of the environment is the operations

engine, which is responsible for the execution of operations. The schema of operation

management can be seen in Figure 2.7.

The framework is compatible with multiple data storage formats and supports the

Hadoop environment including the distributed file system and the execution of opera-

tions using MapReduce [41].

Figure 2.7: Processing model of the AEGIS framework

2.3.2 Revision control in AEGIS

As the revision control architecture designed in Section 2.2 was implemented as part

of the AEGIS framework, the spatial data and operation model described in Section 2.3.1

was already defined in a form that conforms to the specification. The implementation of

17

2. Revision management of vector data models

the lower level components in the version management system required only minor devi-

ations from the specification, since essentially only the layers with higher abstraction lev-

els are affected by the peculiarities of the various revision management methodologies.

Therefore, the RevisionDescriptor and RevisionModel classes could be defined along-

side the designed scheme and an interface named IChangeset was introduced for logical

storage of changes (geometry additions, deletions and editing transformations) between

versions. To provide the best obtainable efficiency even in different environments, this

interface has been implemented in multiple ways for the purpose of storing forward

(ForwardChangeset), reverse (ReverseChangeset) or even mixed deltas (DualChangeset)

in a specific revision management tool12. The main components of the version control

sub-framework in AEGIS can be seen in Figure 2.8.

Figure 2.8: Implementation model of the revision control system

The physical storage of version history is independent of the revision control model

described in Section 2.2.1. Therefore, an abstract Storage interface was created to manage

the persistence and attainability of the revision model and the changesets. The various

implementations of the storage component do not contain any specific knowledge about

the inner architecture of the revision system, but are solely responsible for storing and

returning the requested data with respect to a specific physical storage (e.g., a file system

or a spatial database).

To link the above logical and physical model and provide users with higher level

functionality with a simple interface, a compact Repository component was defined that

12SVN, for example, generally caches the state of the head revision and stores reverse deltas on the main
branch, while persisting forward deltas on the side branches

18

2. Revision management of vector data models

aggregates instances of RevisionModel and Storage. With this concept, the inner archi-

tecture of the framework remains hidden to the user from the outside, as the repository

combines all available functionalities and provides a joint public interface. At this high

level of abstraction, the well-known revision management commands (commit, update,

checkout, merge, etc.) are also introduced as callable procedures.

Finally, to provide complex base types for implementing production revision man-

agement tools built on top of AEGIS, the WorkingCopy and Server classes were added to

the framework. The former manages a – local or remote – repository and also supports

storage of local, uncommitted modifications. A repository can be in contact with multi-

ple working copies, so it is also possible to implement a centralized or distributed tool.

The Server class is a bare repository, but it has additional synchronization capabilities

(pull and push) towards other repositories, which is a key requirement for decentralized

revision management systems.

It is important to note that the IO component of AEGIS includes import and export

capabilities for GIS file formats and network services. Several standard spatial formats

are supported and the module allows the consumption of OGC web services including

WMS and WFS. Therefore, despite the specific inner data representation of the system,

the sample implementation of the revision control model presented in this section is eas-

ily connectable to widely used spatial data formats and services via the AEGIS frame-

work.

2.4 Results and performance analysis

The practical applicability of the designed and implemented version control frame-

work can be measured by comparing the created software with similar available tools

in the research domain. To quantify the result of the comparison, storage efficiency, the

most significant attribute of revision management systems, was selected and studied in

Section 2.4.1.

As the size of a project’s version history increases, recreation of an arbitrary revision

with satisfactory performance in terms of speed could encounter obstacles. The cause of

this problem and possible solutions were discussed in Section 2.1 and Section 2.2.2. In

Section 2.4.2 we measure and analyze this other substantial aspect of our version control

tool for different scenarios.

2.4.1 Storage efficiency

Three existing version management tools were selected as the basis for the bench-

mark: Subversion 1.8.11, Git 2.3.2, and GeoGig 1.0. The former two are probably the most

19

2. Revision management of vector data models

widely used general purpose version control tools in the world [29] , while GeoGig is

the only other known and actively developed software specifically designed for tracking

changes in (binary) geospatial data.

The data format tested was the Shapefile, as it is a widely used binary storage format

for vector graphics data supported by all four compared software. This type of binary

data is usually processed by general delta producing algorithms in most classical revision

control tools.

Most version control tools used in production – such as Subversion and Git – not only

compute deltas instead of storing full snapshots of the data, but also apply lossless com-

pression methods to further reduce the amount of storage space required. As both SVN

and Git use the DEFLATE procedure based on the well-known Lempel-Ziv 1977 algorithm

[42] for compression purposes, a similar method was implemented in the prototype tool

created with AEGIS to avoid any remarkable distortion in the measured results. Our im-

plementation therefore uses the LZMA procedure, another variant of the LZ77 algorithm,

to compress the serialized revision model and changesets before they are physically per-

sisted.

Testing was performed by populating a repository of all four revision control tools

with a thousand revisions of a single Shapefile, and the editing operations evaluated be-

tween the versions were also provided for our prototype operation-based system. The ex-

perimental results are presented in Figure 2.9a, where for reference purposes the storage

space requirement of the 1.000 states of the sample Shapefile was also indicated, exceed-

ing 33 gigabytes. The outcome of the measurement clearly shows that Subversion and Git

required about 3-5 percent of the unversioned storage space, while the AEGIS prototype

demanded a much more limited amount of space, around 0.2 percent. The results of the

GeoGig test may be surprising, hence its repository occupied more than 10 percent of the

storage space of the full snapshots of all versions altogether. The explanation for this re-

sult might be the loose, superfluous and redundant inner data representation of GeoGig.

This unfortunate aspect of the software has been significantly improved compared to

previous versions, however the tool is still in a beta development phase.

Remark. It is worth noting that Git itself also uses a loose object format [43] that can be

combined into packfiles using delta compression to save space. The repacking process is

generally able to reduce the size of the Git repository multiple times when large amounts

of data have been stored in a loose format. In our experiment, the storage space allocated

by Git was determined after the repacking of the objects was manually enforced.

To evaluate the efficiency of storage requirements in a real-world scenario, the sec-

ond test case was based on the available history of the OpenStreetMap datasets about

20

2. Revision management of vector data models

Hungary in Shapefile format13. Altogether 11 revisions were used, covering a period of

more than one year. The evaluation of the second test case is shown in Figure 2.9b and re-

veals similar results as the previous test with the generated data. While the gathered and

stored semantic information regarding the editions is a sure advantage of the operation-

based model, the advantage of AEGIS in terms of space is evidently relaxed in this case.

The reason is that only a few revisions were analyzed in quantity and a significant part

of the modifications were additions of new data, as the OpenStreetMap dataset about

Hungary has increased in size by over 60% in the last year.

(a) Generated dataset (b) OpenStreetMap dataset

Figure 2.9: Storage efficiency comparison of revision control tools

This section proved that an operation-based approach can not only preserve crucial

semantic information about editing operations, but that even a prototype implementa-

tion of a geospatial revision control system can perform better in terms of memory re-

quirements than the general binary delta algorithms applied by the version management

systems in production.

2.4.2 Computation performance

In addition to the advantages emphasized at the end of the previous section, the po-

tential disadvantages in terms of computational efficiency of the operation-based archi-

tecture must also be examined, since in this model the changesets contain sequences of

transformations instead of state modifications. Since the evaluation of certain spatial op-

erations can be quite time consuming, and these transformations have to be executed

each time a revision is recreated from the state of another one, this can significantly affect

the performance of such a system. The problem can be mitigated by making appropri-

ate implementation decisions. For example, storing the head state of the branches and

persisting reverse deltas in the changesets ensures that the fresh revisions are always
13The shapefiles were downloaded from the publicly accessible history available on the www.geofabrik.de

website.

21

www.geofabrik.de

2. Revision management of vector data models

easily producible by the framework. Moreover, automatically saving snapshots through

a declared heuristic can also ensure a maximum limit on revision recreation time at the

expense of storage space. However, as stated in Section 2.2.3, not all operations are re-

versible.

Figure 2.10: Speed performance comparison of different methods

As a practical demonstration of our previously mentioned theory, we used our pro-

totype tool to create three repositories containing the same spatial version history of a

few hundreds revisions. The changesets attached to each version consisted primarily of

time expensive transformation operations. The three repositories applied different mod-

els with respect to changesets: the first used forward deltas, the second applied back-

ward deltas, and the last also worked with backward deltas but persisted a snapshot of

the current state at every 20th revision on each branch. Figure 2.10 shows the recorded

average checkout times for the initial, the head, and a random revision in the reposito-

ries, which obviously illustrates the performance advantage of using reverse deltas and

creating snapshots14.

Computational performance was also compared with the widely used version con-

trol tools Git and SVN. In the experiment, a repository with the same revision history

for geospatial data was created for each tool15. Then the query time for the initial, the

head and random revisions was recorded. The measurements were evaluated multiple

times and the average execution times are listed in Table 2.1. Although it is in line with

our expectations that revision control tools with a state-based model have a better query

time for random revision, it is remarkable that the difference is only a single order of

magnitude.

14In a production environment, of course, better heuristic should be chosen, not only in terms of quantity,
but also in terms of the complexity of the changesets.

15For AEGIS, the reverse deltas with snapshots heuristic was selected.

22

2. Revision management of vector data models

Version control tool Init revision Head revision Randomized revision
AEGIS 15 ms 1 ms 6091 ms

Git 305 ms 434 ms 649 ms
Subversion 301 ms 1714 ms 1198 ms

Table 2.1: Speed performance comparison against other tools

Remark. The performance comparison of AEGIS, Git, and SVN was conducted several

years after the other evaluations in this section, which were included in the previously

referenced conference publication [4]. Due to Geogig being an abandoned project at

present, with newer versions unavailable for download and older versions incompati-

ble with modern software setups, it was excluded from this analysis.

2.5 Conclusions

The chapter introduced the concept of an operation-based geospatial revision con-

trol using a high level model, thus it is applicable for both vector and raster data, and

supports a variety of storage solutions. Despite the inevitable computational overhead of

this architecture, considering the peculiarities of the geographical information systems,

this model is capable to deliver formerly unobtainable benefits on the field of revision

control of spatial data, like persisting the semantic information of modifier operations.

I presented a detailed design on the concept enabling not only linear control, but also

branching and tagging, and usage of distributed repositories. A sample implementation

for the design was also provided as part of the AEGIS spatio-temporal framework. In

order to demonstrate in practice that the solution is able to manage geospatial data more

efficiently than any other currently available revision control software, my prototype tool

was compared in a benchmark test with other well-known tools. Evaluation has shown,

that the proposed approach is capable of matching and even excelling efficiency of cur-

rently available solutions both in terms of storage space and computation performance.

Thesis 1. I have presented the methodology for the efficient management of geospatial data us-

ing operation-based revision control, while persisting the semantic information of the changesets.

Beside the theoretical model, a prototype implementation was also provided part of the AEGIS

geospatial framework, a generic library for geographic and remote sensing data processing.

Future work can examine the possible heuristics for a convenient and balanced snap-

shot management. Support for other spatial data structures besides the Simple Feature

Access architecture – like topological representation – is also planned. The application

of revision control in distributed data management is another future research topic, as

AEGIS is capable of distributed data processing using the MapReduce paradigm [38].

23

Chapter 3

Change analysis of buildings and

vegetation in airborne point clouds

As the utilization of LiDAR is becoming more affordable and available for a wider

audience, the analysis of point clouds constructed by laser scanning is drawing more

attention. Airborne LiDAR is especially useful in the analysis and classification of land

objects. We are able to determine if they are natural or artificial, human-built objects and

what changes occurred to them throughout time by examining multitemporal data.

Meanwhile, the increasing quantity and improving quality of measurements have

raised new challenges related to the computation and memory efficient analysis of mas-

sive point cloud datasets. Distributed and cloud computing systems have been around

for years, have proven to be notably useful in static or rarely altering big data processing,

and have been applied in numerous fields, including Geographic Information Systems

(GIS) [9]. Previous research has addressed the importance of distributed cloud-based

storage [44] and management [45] of these rapidly growing spatial datasets. Various ap-

proaches for efficient multithreaded loading and processing of point clouds were investi-

gated [46]. Distributed LiDAR processing towards digital elevation models also received

considerable attention from the scientific community [47, 48]. Recent advancements in

this field propose design guidelines on how to specify and implement a complex service-

oriented framework for storing, processing, and visualizing massive multitemporal point

clouds [49]. However, analyzing spatial features at a higher level of abstraction is still an

unsolved challenge in multiple aspects, and most available algorithms are usually appli-

cable and were tested only for smaller areas.

24

3. Change analysis of buildings and vegetation in airborne point clouds

In this chapter, I propose a methodology to automatically evaluate altimetry change

detection of massive multitemporal datasets on distributed high-performance computers

(HPC) or in a cloud computing environment like Hadoop1 or Spark2.

3.1 Related work and background

Light Detection and Ranging (LiDAR) – also known as laser scanning and LaDAR

– is an active remote sensing system used to determine the distance between the target

surface and the sensor. This is done by illuminating the target with pulsed laser light

and measuring the reflected pulses. LiDAR was first used in the early 1960s and became

widely known after the Apollo 15 mission in 1971, when the method was used to map

the surface of the Moon [50]. LiDAR can use different types of light for illumination:

ultraviolet, near infrared and visible. The illuminated targets can be a variety of materi-

als, such as rocks, non-metallic objects, rain, snow, clouds, or even chemical compounds.

This allows LiDAR to be applied in a broad range of disciplines such as geoinformat-

ics, geography, geodesy, archeology, forestry, agriculture, atmospheric physics, military,

autonomous systems and augmented reality. The two main types of applications are air-

borne laser scanning (ALS) and terrestrial laser scanning (TLS). Several considerations are

taken into account when deciding which type to apply, such as the purpose of the data,

the size of the target are, the cost of detection, etc. ALS is mainly used to create very high

resolution maps or 3-dimensional digital models of the surface [51].

The irregularity of point clouds increases the algorithmic – and thus the computa-

tional – complexity of point cloud analysis and comparison. To address this issue, a raster

grid can be interpolated based on the original point cloud, named a digital elevation model

(DEM). The cells contain the accumulated elevation values computed using, e.g. the in-

verse distance weighting (IDW) algorithm [52, 53], typically represented in GeoTiff format.

This model also reduces the number of data points to be analyzed, which can be con-

trolled by the grid size of the DEM. For many applications, the high density of point

clouds is not essential, yet a less accurate but easier to use model is favorable. Types

of digital elevation models can be further categorized by their content, as depicted in

Figure 3.1 and described as follows:

Digital elevation model (DEM) is a commonly used term for models created from point

clouds. It is a regular grid that contains elevation values in its grid points. DEM is

a popular data format that facilitates the use of raw point clouds with a reduced

density.

1http://hadoop.apache.org/
2http://spark.apache.org/

25

http://hadoop.apache.org/
http://spark.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.1: Difference between DEM, DSM and DTM3

Digital surface model (DSM) is a model that contains every object (buildings, vegeta-

tion, power lines, etc.) captured by LiDAR in the point cloud.

Digital terrain model (DTM) is a model of the bare surface of the Earth. Unlike the

DSM, objects are removed from the model. When considering vegetation, the DTM

usually includes the height of the ground surface. In the case of buildings, the

height values are either interpolated from neighbouring values or given an extremal

value called the nodata denotation.

3.1.1 Classification of land cover

In geospatial terms, classification is the arrangement of objects into smaller groups

based on their attributes and relationships. The main classes for the topic of this study are

urban objects and vegetation. Various approaches exist for processing point clouds and

using them in classification, with special regard to the built-up area and the vegetation.

Bellakaout et al. [54] mention a classification method that identifies and uses different

contour types by which objects can be classified. The paper describes four different object

classes that contain terrestrial objects identified by contours: superior contour, inferior

contour, uniform surface and nonuniform surface. These classes allow the extraction of

soil, vegetation, buildings and roads.

Antonarakis, Richards, and Brasington [55] describe two models for distinguishing

natural and planted forestry, one of which includes ground hits while the other elimi-

nated the ground points before classification. The former relies on the use of bimodal

distribution skewness and kurtosis models. A skewness value and a kurtosis value were

chosen to define which pixels belonged to a natural forest, and which ones belonged to a

planted one. This method also proved to be useful in determining whether the tree was

3Image source: Wikimedia Commons

26

3. Change analysis of buildings and vegetation in airborne point clouds

younger or mature. The other referred method was created using kurtosis and skewness

layers that were not influenced by the ground or the ground vegetation, making the cor-

responding values different. A percentage of canopy hits model (PCM) was also taken

into account for the sake of a more accurate classification.

Song et al. [56] describe a study whose aim was to evaluate the use of LiDAR data

in land cover classification. The key of this method is to classify objects based on the

intensity of reflection. The point clouds were converted into grid form by the IDW and

the Kriging interpolation methods. The conversion created some noise in the dataset that

had to be filtered. Afterwards, the acquired intensity data was ready to be divided into

four classes: grass, tree, asphalt road, and house roof. Beside the classification of veg-

etation, attribute estimation such as tree or canopy height can also be performed [57].

The combined usage of aerial photography and airborne LiDAR to enable more precise

classification and estimation of tree height in forestry has also been studied [58].

Machine learning algorithms, such as neural networks and deep learning have be-

come a frequently utilized approach in classification methods, and land cover classifica-

tion is no exclusion. Shaker, Yan, and LaRocque [59] used machine learning algorithms

to automate land-water classification. Such algorithms can also be used for more specific

land cover classification. Sun et al. [60] compare three deep learning methods in their pa-

per to determine whether (and to what extent) they are suitable for mapping tree species

in a tropical environment. Convolutional neural networks (CNN) have proven to be es-

pecially applicable for image classification tasks. Building detection based on VHR aerial

images was also addressed with CNNs [61, 62]. Recently, Politz and Sester [63] presented

a residual neural network, which detects building changes using height and class infor-

mation on a raster level based on LiDAR or photogrammetric point clouds. Although

these results look promising, evaluation is usually carried out on a relatively small area,

often not exceeding a few dozens of square kilometers.

3.1.2 Building segmentation

Development towards collecting dense point clouds from large distances allowed us

to develop methods to recognize buildings based on remotely acquired point clouds [64].

Numerous methods have been developed for urban classification and building extrac-

tion from digital surface models [65, 66] or from TIN models [67]. Most recent stud-

ies achieved to generate 3D models from building footprints and airborne LiDAR point

clouds [68], even at a LoD2 level, thus representing buildings with roof shapes [69]. Such

detailed urban building databases can be widely used, for example, to estimate the en-

ergy demand of residential buildings [70].

27

3. Change analysis of buildings and vegetation in airborne point clouds

3.1.3 Individual tree segmentation

Segmenting single (individual) trees is a well-researched topic with several somewhat

similar approaches. The papers by Kaartinen et al. [71] and Eysn et al. [72] give very

good summaries and a comparison of the existing methods based on their matching rates

among other aspects.

Local maximum detection in trees is a widely used technique in tree segmentation

which is applied along with other methods. Complementing local maximum detection,

these methods include low-pass filtering with a convolution matrix [73, 74, 75] for image

blurring. In their paper, Monnet et al. [73] aim to identify tree tops based on airborne

LiDAR data, but the methodology is successful in only 42.9% of cases and they conclude

that their algorithm is highly dependent on parameters such as tree species.

Clustering with region growing [75] and the watershed algorithm are also frequently

applied in tree segmentation to determine tree edges in the point cloud [76, 77, 78]. In

their work, Yang et al. [78] use the watershed approach and also a 3D spatial distribution

recognition of point clouds. Their method is effective on tree apex detection, however, it

is unsuccessful on multi-layer tree structures.

Li et al. [79] developed an algorithm that handles overlapping trees by comparing the

distances of the current, lower point to the previously classified, higher points. Therefore,

they do not need to identify overlapping or multi-trunk trees.

In their paper, Reitberger et al. [80] combine conventional tree segmentation meth-

ods with first/last pulse data and full waveform data. They could successfully analyze

the deeper layers of tree stands and thus correctly segment shorter trees, which was un-

precedented at the time.

Jakubowski et al. [81] compare an object-based image analysis of a CHM to a LiDAR-

derived method that uses 3D points, both of which are used to produce polygons of trees.

They found that the LiDAR objects resembled more to the shape of real trees. Similar

approaches are described in [77, 76]. These methods performed with a more modest result

in densely vegetated areas.

3.1.4 Change detection in point clouds

The goal of change detection is to identify changes in the examined area that occurred

between the epochs when the datasets were formed. This is not always an easy task, as it

is seldom possible to repeat individual point measurements.

There are two distinct types of change detection: binary and quantifiable change. The

former is a simple approach which only determines whether there was a change in the

scene. Its result is mostly a binary map where no change is indicated by 0, and no change

28

3. Change analysis of buildings and vegetation in airborne point clouds

is indicated by 1. Quantifiable change, on the other hand, strives to find a more complex

answer to non-binary questions on the exact nature of the change. The binary type is often

simply called change detection, while quantifiable change detection is called deformation

analysis [82].

The existing methods can be grouped into the following categories.

2.5 dimensional visibility maps: The dimension of the point cloud can be reduced to

2.5D if the observation occurs from a fixed scanner position. This way, objects

can appear, disappear, and move in the point cloud, revealing contingent binary

changes in the scene. A spherical coordinate system is used to determine if there

are any changes in the point clouds: the dataset that was captured later (and per-

haps from a different but fixed stand-point) is transferred into the coordinate sys-

tem. Afterwards, it is checked whether the reference cloud points are present in the

new cloud. If a point is there in the new cloud, it is checked whether it represents

an object at this location or not. Points can also be invisible due to occlusion [82].

Direct DEM comparison: This binary method extends digital elevation models with a

simple subtraction process and adjusts the results to eliminate errors caused by

misregistration [82]. It can be used both in urban areas and in nature. In addition,

it is worth noting that direct DEM comparison is a decent quantifiable method

as well, since exact height and volume changes can be measured by comparing

DEMs. Santos et al. [83] use DSM comparison to produce a difference DSM for their

method of building change detection, as a first step to determine height changes in

the point cloud.

Pointwise deformation analysis: Most methods for change detection are based on

DEMs constructed from point clouds. Other quantifiable methods examine raw

point clouds in order to achieve more accurate results. Butkiewicz et al. [84] de-

scribe a change detection method in their paper that finds deformations in urban

environment over time, both in vegetation and buildings. It also uses raw LiDAR

point clouds. It calculates bounds for what could be scanning error or geological

variation and compares the distance of points in different scans. This method is

capable of detecting changes in individual and grouped objects as well.

Object-oriented deformation analysis: This quantifiable method makes use of the ob-

servation that man-made objects are mostly constructed by geometric shapes like

planes and cylinders [85]. Although these shapes are easily recognizable by only

a couple of points, the cloud still consists of hundreds of thousands to millions of

29

3. Change analysis of buildings and vegetation in airborne point clouds

points. This redundancy might be used to determine every facet of change in the

scene the dataset represents.

3.1.5 Change detection of buildings

In addition to detecting buildings in a single epoch, identifying their modifications

between multiple data acquisitions has also received significant scientific attention in

the past decades. This provides an automated, therefore, more cost efficient and faster

solution in contrast to expensive and time-consuming field surveys and manual data

evaluation. A commonly used method is to work with and compare the mentioned 2 1
2 D

digital surface models [84, 66]. Various types of supplementary data sources can also

be utilized to increase the precision of building recognition. Georeferenced aerial raster

imagery can easily be used together with point clouds [86, 87]. The method developed by

Vu, Matsuoka, and Yamazaki [88] depends on a building inventory of the scanned city,

while Vögtle and Steinle [89] classifies the surface prior to the change detection procedure

to achieve better accuracy. Zhou et al. [90] use very high resolution (VHR) aerial stereo

images to generate a photogrammetric point cloud and detect changes compared to a

previously acquired LiDAR point cloud, thus reducing the cost and the usually longer

time interval (multiple years) between two LiDAR measurements of an area. The results

of the change detection analysis can again be combined with other data sources, such

as Van Natijne, Lindenbergh, and Hanssen [91] presented with Interferometric Synthetic

Aperture Radar (InSAR) data for deformation monitoring.

Instead of working on 2 1
2 D elevation models, change detection methods on the point

cloud level also gained focus in the past decade. These approaches often measure the

cloud to cloud (C2C) or cloud to plane (C2P) distance of point pairs [92]. Alternatively

the Iterative Closest Point algorithm (ICP) is used by Matikainen et al. [93] or Scott et al.

[94] to detect 3D translations between point clouds from different epochs. Politz, Sester,

and Brenner [95] apply a combined method, where within each raster grid cell, the height

distribution of all points for two moments in time is considered by exploiting the Jensen-

Shannon distance to measure their similarity. Nowadays, even multi-directional change

detection is used to detect the dominant movement direction of the ground [96].

3.1.6 Change detection of vegetation

LiDAR has proven to be an effective technology for monitoring changes in vegetation

[97]. Vegetation is mostly represented by irregularly distributed points in the dataset.

This irregularity is helpful when the aim is to monitor changes in vegetation since, as

mentioned before, artificial objects are most likely constructed by geometrically regular

30

3. Change analysis of buildings and vegetation in airborne point clouds

hulls. LiDAR-based monitoring is also efficient because the laser beams easily penetrate

through leaves and the canopy of trees. The denser the point cloud, the easier it is to

detect changes in height and land cover. In addition to changes in trees and forestry,

changes in the total biomass of an area can be monitored by analyzing multitemporal

laser scanned data. The point clouds can be collected by both terrestrial and airborne

laser scanning.

Meyer et al. [98] tried to estimate the biomass change of a 0.5 km2 tropical area. They

collected canopy height metrics and used an importance analysis method to evaluate the

importance of the variables. They demonstrated the use of spatial scales in biomass esti-

mation and determined that they give more accurate results when used on finer scales.

Another LiDAR-based change detection method specifically targeted at trees was de-

scribed by Kaasalainen et al. [99]. In their paper, they use the TIN model to detect quanti-

tative changes in tree growth and litter production. They created a flexible surface model

for each tree using the QSM method [100] and compared it to the model created using

the TIN model, resulting in an error range of ±10% in terms of accuracy.

In conclusion, it is clear that several different approaches exist for the change detec-

tion of both natural and artificial environments, and they provide more or less accurate

methods. However, these methods are usually manual or semi-automated and they are

not capable of covering large areas.

3.2 Dataset description

As example measurements, the multi-epoch nation-wide AHN4 (Actueel

Hoogtebestand Nederland) altimetry archive of the Netherlands was selected for demon-

stration. The AHN project provides publicly available altimetry data for the entire

territory of the Netherlands, which extends approximately 40.000 square kilometers and

contains data points of magnitude of trillions [101]. Since the launch, 4 data acquisitions

were completed:

• AHN-1 point cloud was scanned between 1996 and 2003.

• AHN-2 point cloud was scanned between 2007 and 2012 [102].

• AHN-3 point cloud was scanned between 2014 and 2019 [103].

• AHN-4 point cloud was scanned between 2020 and 2022.

I have selected to use AHN-2 and AHN-3 for comparison in my research, as these

measurements were completed for the entire country during the evaluation. This enabled

to recognize the changes in man-made structures and the natural environment that oc-

4http://www.ahn.nl/

31

http://www.ahn.nl/
http://www.ahn.nl/

3. Change analysis of buildings and vegetation in airborne point clouds

curred in the 7-8 years long timespan of their difference. The year of data acquisition for

the different regions of the country is depicted in Figure 3.2.

(a) The AHN-2 dataset was collected in the
period of 2007-2011

(b) The AHN-3 dataset was collected in the
period of 2014-2019

Figure 3.2: Data acquisition periods for the Actueel Hoogtebestand Nederland dataset

The complete AHN dataset is provided through 1.368 tiles per epoch, each of them

covering an area of 31.25 km2. (The covered area from the territory of the Netherlands

may be smaller in the edge tiles.) The tile boundaries of the dataset are shown in

Figure 3.3.

The quality of the AHN-2 and AHN-3 measurements is similar, no significant im-

provement has been reported in the dominant factors. According to the quality specifi-

cation [102], the average density of the AHN-2 point cloud is 10 data points per square

meter and the vertical error threshold of the accuracy is below 0.2 meters – for 99.7 per-

centage of the data. The precursory specification [103] of AHN-3 assessment defines only

slightly better requirements in these terms, improving the vertical accuracy to 0.15 me-

ter with the same criteria as mentioned before. The datasets are downloadable in two

formats: beside the point clouds, preprocessed digital elevation model (DEM) grids with

0.5 meter and 5 meters resolution were also made available by the data provider. The

finer raster format with half meter resolution was rendered from the point cloud with a

Squared Inverse Distance Weighting algorithm [104], while the more coarse 5 meters grid

was resampled from the other in an unweighted manner.

Raw point clouds are extremely large on this scale, each AHN tile is typically over

15 GB (in LAS format). Managing and processing point clouds on a scale of billions or

trillions is a complex task, as already shown for the AHN-2 dataset itself by Oosterom

32

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.3: Tile boundaries of the complete AHN dataset

et al. [105]. Utilizing the half meter resolution digital elevation models of AHN over the

raw point clouds has multiple notable advantages:

Storage space requirement can be reduced by at least a magnitude considering the point

density of the cloud. In fact, the gain is even more major when the possibility of

multiple laser pulse returns and the typical LiDAR metadata per point (flight line,

scan angle, classification, etc.) is taken into account. The raw point cloud dataset in

LAS5 format for a single tile is typically more than 15 gigabytes, while the uncom-

pressed raster grid is roughly only 500 megabytes.

Algorithmic complexity of the comparison and change detection of AHN epochs can

be greatly reduced when data points are locked in a fixed grid and the datasets

properly overlap with each other on the X and Y axis.

Evaluation time as a result of the above mentioned reasons is also significantly beneficial

with this condition.

To save time and computational cost and produce the most accurate results possible, we

used the DEMs of 0.5 m resolution of AHN-2 and AHN-3 for our research.
5http://www.asprs.org/

33

http://www.asprs.org/
http://www.asprs.org/

3. Change analysis of buildings and vegetation in airborne point clouds

3.2.1 Study area

A demonstration area had to be selected to adequately showcase the proposed

methodology, which contains an urban environment with both buildings and plenty of

vegetation, preferably with considerable changes between the two analyzed epochs of

data acquisition. To describe a fitting demonstration area, it shall contain zones of all of

the following types:

• construction site: territory where buildings – with significant size – have been con-

structed or demolished in the given time period;

• unchanged building zone: built-up neighbourhood, but without remarkable modifi-

cation in the artificial objects;

• green area: zone in an urban vicinity where considerable alteration occurred due to

natural reasons like vegetation growth or tear down.

Figure 3.4: Satellite image of the TU Delft campus area with indicated study locations

The campus and the surroundings of the Delft University of Technology satisfies all

these criteria and was therefore selected as the sample area – shown in Figure 3.4 – for this

section. The city of Delft was scanned in the years 2008 and 2014 for AHN-2 and AHN-

3, respectively.6 Altogether 11 reference locations – detailed in Table 3.1 – were chosen

to illustrate the proposed methodology. Our expectation is that in the case of locations

A1-A3 removal of buildings should be detected, while for B1-B3 construction of new ones

should be recognized. Finally, locations C1-C5 shall reveal no change in the built-up area,

but notable changes in vegetation height at C2 and C5 and new trees planted especially

at C3.
6The satellite image was taken on 2013 July 8, exported from Google Earth.

34

3. Change analysis of buildings and vegetation in airborne point clouds

Mark Description

A1 the old building of the Faculty of Architecture which was devastated in an
extensive fire and was completely tore down afterwards;

A2 a removed unused warehouse building;
A3 demolished office of the TNO Research Facilitates;

B1 the new site of the The Hague University of Applied Sciences and the
InHolland University of Applied Sciences, located next to the TU Delft cam-
pus;

B2 newly built apartments by the student housing corporation DUWO;
B3 a freshly constructed multihousehold building;

C1 industrial area almost west to the campus without notable artificial alteration
and very low ratio of green vegetation;

C2 a garden suburb without significant modification in the built-up area, but pros-
perous change of the vegetation surrounding the buildings and streets;

C3 the Mekelpark which was formed in place of a busy road;
C4 a highway with vehicles on it;
C5 a single street (named Schoemakerstraat) with tree lines on both side of the

road and a canal next to it.

Table 3.1: Description of study locations at the TU Delft campus area

The AHN datasets used in the research are publicly available and can be found at

http://www.ahn.nl/.

3.3 Methodology of building change detection

This section provides a comprehensive description of the data evaluation workflow

and its algorithmic steps, based on the research published in [1]. The study focuses on

larger scale changes in the built-up area, where complete buildings or building blocks

were constructed, demolished or rebuilt between the analyzed epochs. Such alternations

could also be properly validated against national registers of buildings where publicly

accessible. The intermediate results of the workflow are showcased on suitable example

areas described in Section 3.2.1. These images are also available in Appendix A for easier

comparison.

3.3.1 Threshold filtering

As an initial prototype of change detection, the changeset between the surface eleva-

tion models (DSM) of the AHN-2 and AHN-3 data acquisitions shows the area selected

for demonstration in Figure 3.5. Although the theoretical accuracy of detecting altimetry

changes is 0.35 meter – as described in Section 3.2 –, a higher threshold of 1 meter was ap-

plied because our research focuses on larger scale alterations in the built-up area, which

35

http://www.ahn.nl/

3. Change analysis of buildings and vegetation in airborne point clouds

should always meet this assumption. Altimetry changes below the absolute value of 1

meter were ignored.

Figure 3.5: Unfiltered altimetry changes between AHN-2 and AHN-3 measurements.
The two locations marked with rectangles indicate a park and vehicles on a highway.

While the expected changes described in Section 3.2.1 are clearly present in the

changeset, it is extremely noisy with all the fluctuation of vegetation and other alterations

not related to buildings, such as the reconstruction of the Mekelpark (reference site C3) or

vehicles on the highway (reference site C4). In the following subsections, we present our

methodology to filter out and remove all unwanted alterations.

3.3.2 Detecting objects

To clean up the changeset, the distinction of built-up areas is an essential component.

The detection of buildings based on digital elevation models has already been thoroughly

researched and offers several solutions to this problem. The most commonly used tech-

niques include comparing ground (terrain) and surface level DEM [106, 89] to extract

objects; classifying land cover by supplementary colored orthoimagery [107]; and detect-

ing building edges by either histogram thresholding [88] or contour extraction [86].

Alongside the surface elevation model (DSM), a terrain level model (DTM) is also

provided within the AHN dataset, enabling an easy implementation of the first indicated

method without any computational overhead – on the cost of doubling the storage space

requirement of the input dataset. These DTMs contain no height information – marked

with an extremal nodata value – in areas where the ground surface was covered, thus

the location of such objects can be determined in a straightforward manner. According

to the quality specifications referred to in Section 3.2 the DTMs were directly calculated

from the point cloud data acquisitions, assuring a superior quality – in contrast when it is

36

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.6: Areas potentially containing objects by comparing ground / surface
coverage and nodata values in the AHN DSM and DTM layers

produced from the DSM – by the usage of possible multiple returns of laser pulses. Hence

it is feasible to filter out partially transparent objects like trees solely by this observation.

Figure 3.6 shows the objects identified in the example area by comparing terrain and

surface elevation models, distinguishing the locations where ground level was covered

in only one or both of the AHN datasets. As visualized apart from infrastructure such

as buildings and bridges, coherent areas of trees and cars were also detected as objects

concealing the ground, and therefore additional filtering is required to reach an adequate

result.

3.3.3 Changeset filtering

A common statement for the structures in the built-up area desired to be distin-

guished is that they are immoveable, hence when unmodified the altimetry values on

a raster grid should show no significant change – although building facades may appear

as modifications due to small misalignment between the analyzed epochs. On the other

hand, most vegetation provides a high frequency of noise, since laser pulses may measure

significantly differing values of height data and thus can be erased from the changeset as

shown in Figure 3.7.

The noise filtering algorithm [108] applied also must take into account that in some

cases considerable noise may appear in the elevation change of buildings, when:

• a structure is constructed on a previously irregular ground surface like a forest; or

• after demolition the terrain remains rough or vegetation starts growing.

We defined noise as the average percentage of absolute height difference compared to

surrounding areas of 2.5 by 2.5 meters (5 ∗ 5 pixels). The formula shown by Equation 3.1

37

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.7: DTM-DSM comparison based object extraction followed by noise filtering

calculates the noise percentage for a given position x, y with a given range r = 2 in our

case, where Cx,y defines the altimetry change for that location. To rule out false positive

removals, an outcome exceeding 50% was deemed noisy.

noise(x, y) =

∑
−r≤i≤r
−r≤j≤r

∣∣Cx,y − Cx+i,y+i
∣∣

min
(∣∣Cx,y

∣∣ ,
∣∣Cx+i,y+i

∣∣)
(2r + 1)2 (3.1)

Our research focused on larger, building level changes, however results still contained

some negligible modifications (e.g. construction of a chimney), small movable objects like

vehicles and the remnants of vegetation which managed to pass the noise filter. Therefore,

as a final filtering operation, small changes – below 100 m2 of area – were discarded

through a clustering algorithm as described by Gonzalez and Woods [108].

Figure 3.8: Cluster filter applied to ignore modifications on an small scale

38

3. Change analysis of buildings and vegetation in airborne point clouds

The results of the example area are presented in Figure 3.8 showing a clear image of

all artificial modifications applied in the built-up areas, and all disturbing elements are

filtered and eliminated.

3.3.4 Border reconstruction

With careful observation and comparison of Figure 3.5 and Figure 3.8 we notice that

the noise filter applied in Section 3.3.3 affected the outer border of – especially high –

buildings. This effect was expected as the steep raise of elevation data results in a high fre-

quency of change and thus noise on such locations. Multiple buildings contain tiny (few

pixels large) holes that were either already present in the initial changeset of Figure 3.5 or

were introduced as an outcome of initial irregularities inside building areas (or even glass

surface on top of buildings) in the AHN dataset through the object filtering demonstrated

in Figure 3.7.

To address these minor issues, the boundaries were expanded by applying a morpho-

logical dilation operator [108] in a 3 ∗ 3 pixel range, interpolating nodata values with the

average of their surroundings. The before mentioned small holes were filled utilizing the

majority filtering [109] using a 5 ∗ 5 pixel range. The final results (Figure 3.9) completely

meet the expected outcome for the reference areas marked in Section 3.2.1.

Figure 3.9: Final results produced through border reconstruction of buildings

3.3.5 Algorithm summary

The presented algorithm aimed to filter out changes in the built-up area solely based

on the AHN datasets, can be decomposed into 7 major reproducible steps (and visualized

in Figure 3.10):

39

3. Change analysis of buildings and vegetation in airborne point clouds

1. DSM versus DTM comparison separately on the AHN-2 and AHN-3 datasets – to

filter out ground-level areas

2. Creating initial changeset by producing differences between the datasets

3. Threshold filtering – with 1 meter elevation change

4. Noise filtering – with 50% relative threshold on a 3 by 3 window

5. Cluster filtering – with 100m2 threshold size and a 4-way connectedness

6. Morphological dilation – on a 3 by 3 window

7. Majority filter:

7.1. with a range of a 3 by 3 window

7.2. with a range of a 5 by 5 window

Figure 3.10: The complete overview of the algorithm workflow

3.3.6 Aggregation overview

The presented algorithm could be evaluated not only on a neighbourhood, but also

at a city or even at a national level: on the complete territory of the Netherlands. In a

local environment, the changes of single buildings can be the focus of interest. However,

in a broader overview of an area, the accumulated values of modifications are easier to

interpret. The CBS7 (Centraal Bureau voor de Statistiek) provides the official boundaries of

Dutch administrative units as municipalities, (electoral-) districts and neighbourhoods in

vector format. These units of territories were used to compute the following aggregated

values for each area:

• gained: the added (built) volume of artificial content per hectare;

• lost: the removed (demolished) volume of artificial content per hectare;

• moved: summation of gained and lost;

• difference: difference of gained and lost.

7http://www.cbs.nl/

40

http://www.cbs.nl/
http://www.cbs.nl/

3. Change analysis of buildings and vegetation in airborne point clouds

A sample visualization of the Delft neighbourhood and its surroundings is shown

in Figure 3.11, the accumulated value of difference, used as the basis of the applied color

model.

Figure 3.11: Neighbourhood level aggregated overview of the city of Delft

3.4 Methodology of vegetation change detection

The aim of this research [2] was to provide an algorithm that, when executed on a

preprocessed point cloud, produces a cluster map that covers every tree in the area by

exactly one cluster. Upon evaluation on multitemporal point clouds, changes in tree pres-

ence, height and canopy volume can be calculated, thus providing tree cardinality and

biomass volume change information for an area. In order to achieve this, the following

steps are executed:

1. Produce a canopy height model of the DSM and DTM of the area in the same epoch.

2. Remove excess local maximum points from the CHM.

3. Interpolate the erroneous nodata points in the CHM.

4. Collect the remaining local maximums.

5. Construct a cluster map from the collection of seed points in which one cluster is

equivalent to one tree.

6. Apply morphological opening on the cluster map to erode outlier points.

7. Pair up clusters of the same area in different epochs and seclude trees without a

pair in both epochs.

8. Calculate change metrics in the vegetation:

8.1. height difference of tree pairs;

8.2. volume difference of tree pairs and epochs.

41

3. Change analysis of buildings and vegetation in airborne point clouds

The steps of the algorithm are depicted in Figure 3.12 and are described in detail in the

following sections. Steps highlighted with purple background contain the main contri-

butions of the proposed algorithm: segmenting trees with multiple local maximums and

overlapping tree clusters; and comparing centroid and Hausdorff distance in the cluster

pairing step. The steps preceding the pairing of clusters (step 7) have to be executed twice

due to the two input sources (AHN-2 and AHN-3)8.

Figure 3.12: Flowchart of the vegetation detection algorithm

The algorithm will be demonstrated on a sample area of the TU Delft Campus. The

reference locations C5 and B3 described in Table 3.1 and its surroundings have been se-

lected for this, as they are close to each other (so they can fit in a single sample area) and

contain various interesting type of areas to analyze:

• tree crowns with no or little gap alongside the street;

• new trees planted in the parking lot next to B3;

• non-vegetation areas: buildings, roads and water.

The selected area is presented with a Google Satellite image in Figure 3.13. We illus-

trate how the algorithm works by taking snapshots step by step from the processing of

the AHN-2 dataset. These images are also available in Appendix B for easier comparison.

3.4.1 Producing canopy height models

The canopy height model (CHM) represents the height of individual trees that are

present in the examined area. It is constructed by subtracting a digital terrain model

(DTM) from a digital surface model (DSM) [110]. A DSM contains a point cloud of the

top of the surface depicting the terrain and the natural and man-made environmental

8In order to accelerate execution, these steps of the algorithm can be carried out asynchronously, and the
cluster pairing can be initialized once both cluster maps are completely constructed.

42

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.13: Satellite image of the study area. Image was acquired on 2013 July 8.

Figure 3.14: AHN-2 canopy height model. All height values are represented in meters.

43

3. Change analysis of buildings and vegetation in airborne point clouds

elements. On the other hand, a DTM represents the bare-earth surface, this is why their

difference provides a fine model of the vegetation. The results of the canopy height model

production are illustrated in Figure 3.14. As mentioned in Section 3.3.2,the used DTMs

contain an extremal nodata value in areas where the ground surface was covered with

buildings, these areas are marked with nodata in the CHM as well.

Remark. The CHM for AHN-2 contains significantly more near-ground points (with a

canopy height almost 0) compared to the CHM for AHN-3. This is the result of a small

divergence between the altimetry values contained by the DTM and the DSM for AHN-2

for the terrain. This issue will be addressed in Section 3.4.3.

3.4.2 Low-pass filtering

Classification should originate and expand from a seed point which is some distinctive

point in the CHM. For trees, the obvious choice is to originate a point set (called cluster)

from the highest point of the tree. However, canopy height models are not reliable for

good clustering on their own because they might contain multiple local maximum points

per tree. This results in multiple smaller clusters per tree in future classification steps.

Therefore, the number of local maximum points needs to be reduced by removing several

unnecessary peaks. The elimination was done by a sweeping-window Gaussian blurring

transformation, with the following convolution matrix:

1
16

·

1 2 1
2 4 2
1 2 1

 (3.2)

This low-pass filtering is similar to the one used by [111], and corrects the data that

would distort further calculations, e.g. multiple local maximum points in one tree that

are too close to each other, which would cause a future cluster to be torn into multiple

smaller clusters. However, we introduced a special rule for handling nodata values – points

in the raster grid where the Z coordinate is missing9. These nodata values were treated

as zero values when performing the multiplication, but the divisor 16 was also reduced

accordingly in such cases – by accumulating the weights only for the cells with data. With

this modification, we managed to eliminate the distorting effect of nodata values on the

low-pass filter. The results of low-pass filtering are illustrated by Figure 3.15.

Our convolution matrix is a 3 × 3 Gaussian filter, commonly used in image blurring.

We have experimented with a 5 × 5 Gaussian convolution matrix with varying results:

while in some cases it eliminated more local maximums for larger trees, it also hindered

9For surfaces that absorb the laser pulse (e.g. water), the DEM sources contain nodata values. The CHMs
generated in Section 3.4.1 also contain nodata values for the grid positions where one or both source datasets
have a nodata value.

44

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.15: Low-pass filtering performed on AHN-2

the correct detection of small trees. Ultimately, the difference in the number of detected

trees was below 1%, therefore the simpler convolution matrix 3 × 3 was used.

3.4.3 Elimination of low points

The previously filtered canopy height model still contains points that do not belong

to trees. These points typically come from vegetation that is shorter than an average tree,

which means that they can be erased from the CHM. To have only trees in the CHM, we

executed a sweeping-window transformation on the model that erased every point below

a threshold value10 of 1.5 m. The results of the elimination of low points are illustrated in

Figure 3.16.

3.4.4 Collecting local maximum points

First of all, we needed the seed points of the prospective clusters. As mentioned

earlier, the most reasonable decision was to set the tree tops as seed points. This was

achieved by executing a sweeping-window calculation on the point cloud, running a

3 × 3 kernel matrix (window) through the points and storing the point in a container if it

was higher than all its neighbouring points, i.e., if it represented a local maximum.

10The constant of 1.5 m was adapted to the trees of the temperate climate zone. It may vary depending on
the average height of trees in an area.

45

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.16: Elimination of low points performed on AHN-2

Figure 3.17: Gap filling interpolation performed on AHN-2

46

3. Change analysis of buildings and vegetation in airborne point clouds

3.4.5 Interpolation of nodata points

In order to achieve more accurate results and eliminate holes, we need to fill the no-

data points that are near a potential cluster. We achieved this by applying a type of ma-

jority filter [112]: the value of a nodata point is calculated as the arithmetic mean of the

adjacent points with value. In our case for each nodata point, if more than threshold ratio

of 50% of its surrounding points had a value, then the arithmetic mean of these values

was assigned to the nodata point. The results of the nodata interpolation is shown in

Figure 3.17.

3.4.6 Tree crown segmentation

Once the seed points have been collected, the next step is to construct clusters of them

that cover the same tree and extend them by classifying the remaining points. In order to

define a cluster map that covers the vegetation tree by tree, 2 constant values are needed:

• Maximum horizontal value, maxh: the assumed greatest horizontal radius that a tree

canopy can reach calculated from its seed point.

• Maximum vertical value, maxv: the assumed greatest vertical difference between the

seed point and another arbitrary point in a cluster.

A cluster will be constructed by gradually expanding the set of points originating

from the seed point, for which we define the neighbours of a cluster as the points adjacent

to the cluster, but not part of it or any other cluster. No other limitations are given when

we collect the neighbours of a cluster. The neighbouring points can be used for various

purposes that have their own limitations. Further filtering is carried out later.

For the created clusters, it is still possible that multiple seed points are present in one

single tree, even though a local maximum-decreasing step was described in Section 3.4.2.

This might occur when a tree consists of multiple local peaks that surround local val-

leys [113]. If two (or more) clusters cover the same tree, then they should be merged. To

determine whether a valley between seed points is an empty space between two trees, or

a local valley in a single tree, the ratio r of the tree heights and the depth of the valley

has to be calculated. For this calculation, we chose the seed point of the shorter tree, so

if r > 1.0, then the valley defines separate trees, otherwise it is a local valley in one tree.

The possible cluster merge cases are illustrated in Figure 3.18:

(A) depicts the case where two tall trees are very close. The valley between them is

marking that the seed points belong to different trees.

(B) illustrates the case when a tall and a shorter tree are close. This case does not require

merging either.

47

3. Change analysis of buildings and vegetation in airborne point clouds

(C) shows that when there is a valley inside a (taller) tree, merging is required.

(D) depicts when two shorter trees are close. This case does not require merging either.

Figure 3.18: The four types of possible cluster merges

Equipped with the collection of seed points and the depth of the valley, the following

algorithm is described for the construction of the cluster map:

1. Define maxh and maxv.

2. Construct a cluster for each seed point. Let the set of all clusters be C.

3. Filter the neighbours of every cluster: calculate the horizontal dh(p, s) and vertical

dv(p, s) distance of a point p to the seed point s. If dh(p, s) ≤ maxh and dv(p, s) ≤
maxv and p is not a nodata value, then add the point to the filtered neighbour set of

the cluster.

4. Take all cluster pairs (ci, cj) (i < j) and the height of their seed points z(si) and z(sj).

Construct the intersection of their filtered neighbour sets.

48

3. Change analysis of buildings and vegetation in airborne point clouds

5. Take each point p in the intersection (if there is any), and calculate the sum height

difference dz for z(si) and z(sj) and the height of the current point, z(p).

dz = z(si) + z(sj)− 2 × z(p) (3.3)

6. Calculate the ratio r of dz against z(si) and z(sj).

r =
dz

min(z(si), z(sj))
(3.4)

If r < 1.0 and neither of ci and cj are to be merged yet, then list ci and cj to be

merged.

7. Merge the listed cluster pairs.

8. Expand the clusters by the previously determined neighbours. Do not add points

twice that form intersections, nor add points to clusters that no longer exist.

9. Repeat from step 3 until there are no changes made to the cluster map.

At the end of the algorithm, a cluster map is constructed which covers one tree by one

cluster. The results of tree crown segmentation are illustrated in Figure 3.19.

Figure 3.19: Tree crown segmentation performed on AHN-2.
The identifiers of the clusters have been randomized, so after applying a color scheme

by identifier, neighbouring trees has distinct colors.

This step is followed by the removal of small clusters (with a threshold value of 4m2)

that contain too few points to cover a tree and are most likely the result of DTMs contain-

49

3. Change analysis of buildings and vegetation in airborne point clouds

ing tall objects other than trees such as lamp posts or reflected points on buildings. As a

result of the removal step, the number of clusters is significantly decreased.

3.4.7 Morphological filtering

Morphological image processing [114, 115] is an image-manipulation method that

is suitable for modifying the shape of an image. It inspects a pixel and assigns a new

value to it according to the other pixel values in its environment. In this research, instead

of their numerical values of the pixels, it relies on whether they contains data or not,

therefore it is specifically applicable for binary image processing.

Morphological opening was performed on the previously constructed clusters as fol-

lows:

• Erosion: let Ther(p) be a threshold value which determines the amount of neigh-

bours of a p point required to be in the same cluster as p in order for p to remain in

the cluster. If Ther(p) < 6, then p is erased from the cluster.

• Dilation: let p be a point in the neighbouring point set of a cluster, and Thdil(p) be a

threshold that determines the number of neighbours of p that are required to be in

the same cluster for p to be added to this cluster. If Thdil(p) > 0, then p is merged

into the cluster.11

Figure 3.20: Morphological opening performed on AHN-2

11The erosion and dilation threshold constants (6 and 0) may vary according to the average canopy radius
of the examined area.

50

3. Change analysis of buildings and vegetation in airborne point clouds

Morphological filtering is usually executed multiple times on a dataset to provide

more realistic tree shapes in the cluster map. For this reason, we execute the morphologi-

cal opening three times – as based on empirical results on sample areas, this provided the

expected results. The results of the morphological opening are illustrated in Figure 3.20.

3.4.8 Cluster pairing

While the irregularity of the original 3D data points is smoothed with the DEM con-

struction, it still results in clusters covering the same tree not being located at the exact

same place even in the DEM. Therefore, we must pair up the clusters in the two epochs

and also determine which trees lack a pair. The pairing algorithm assumes that in case

a tree is present in both epochs, it was recognized correctly in both of them. If the algo-

rithm does not find a pair for a given cluster, then it is presumable that if it is present in

the first point cloud then the tree it covers was cut between the epochs, and if it is present

in the second one, it was planted some time after the first data acquisition. The clusters

representing these trees are separated from the cluster pairs.

Two methods were implemented and tested for pairing as described in the following

subsections.

Centroid distance

Let Epoch1 and Epoch2 denote the two processed epochs and n1 and n2 be the number

of clusters in the two examined cluster maps, respectively. Pairing up clusters according

to their distance of centroids can be done in a linear θ(n1 ∗ n2) asymptotic complexity 12.

This method allows pairing one Epoch2 cluster to multiple others in Epoch1, thus losing

partial injectivity and distorting results. This problem was handled as follows.

1. Define the maximum horizontal distance maxhc of any two clusters. Let C1 be the

cluster set of Epoch1 and C2 be that of Epoch2. Let S be the set of pairs.

2. Take every ci (i ∈ 1..|C1|) that is not already paired and search for the nearest cj

(j ∈ 1..|C2|) by calculating the distance of their centroids where dh(ci, cj) ≤ maxhc

and insert the pair into S. Note that this can result in cj paired to multiple clusters

in C1.

3. Take each pair from S where cj = ck (k ∈ 1..|C2|), search for the pair with minimal

distance and erase the others from S. This step results in previously paired clusters

from C1 becoming unpaired. For this reason, a new iteration is needed to search for

a pair for lone clusters.

12Assuming that n1 = n2 = n as a simplification it will be θ(n2).

51

3. Change analysis of buildings and vegetation in airborne point clouds

4. Repeat from step 2 until no new pairs are found. Therefore, the pair set is partially

injective.

The pairing could be significantly accelerated by creating spatial indexes for the clus-

ter maps, e.g. a quadtree or R-tree. Our solution uses a quadtree in step 2 to boost perfor-

mance with a horizontal threshold value Thh as the maximum search radius.

Hausdorff-distance

The Hausdorff-distance [116] of two point sets is a maximin function: the maximum

distance of the cluster to the nearest point of the other cluster. Formally, for sets A and B

the Hausdorff-distance can be defined as:

h(A, B) = maxa∈A(minb∈B(d(a, b))) (3.5)

The naive distance calculation and comparison require very high computational cost due

to the high number of points in a cluster. In addition to n1 and n2 representing the clus-

ter counts – the same way as defined for centroid-based distance calculation –, let m1

be the average number of points in an Epoch1 cluster and m2 be that in Epoch2. Since

the calculation requires the distance of every point in an Epoch1 cluster to be calculated

to every point in an Epoch2 cluster and this calculation has to be done for each cluster

in both cluster maps, the asymptotic bound for the calculation of Hausdorff-distance is

θ(n1 ∗ n2 ∗ m1 ∗ m2)13. In order to decrease the consequent long runtime and high CPU

time consumption, we applied the early break and the random sampling optimizations de-

fined by [117] and refined by [118]. These optimizations make the Hausdorff distance

calculation more effective: in a theoretic best-case scenario14 it reaches the same θ(k ∗ l)

execution time like the centroid-based approach. We also introduced spatial indexing

(similarly as mentioned for centroid distance) to reduce the cluster pairs requiring a

Hausdorff-distance calculation, and thus further boost the performance.

Pairing by the Hausdorff-distance is not partially injective either, which problem was

handled in a similar manner as for the centroid distance. The results of cluster pairing are

illustrated in Figure 3.21.

13Assuming that n1 = n2 = n and m1 = m2 = m as a simplification, the computational cost can be
approximated as θ(n2 ∗ m2).

14In a worst-case scenario the execution time will not improve at all.

52

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.21: Detected paired and unpaired clusters

Figure 3.22: Height differences of paired clusters

53

3. Change analysis of buildings and vegetation in airborne point clouds

3.4.9 Difference of tree heights

Height differences of individually paired trees and the average height difference of

an area can be calculated from the data acquired in the previous steps.

Let C1 be the cluster set of Epoch1 and C2 be that of Epoch2. Let z(peak(ci)) be the

maximum height of a cluster ci, where ci ∈ C1. Let z(peak(cj)) be the maximum height of

a cluster cj, where cj ∈ C2. Let δh(ci, cj) be the height difference of this cluster pair which

is calculated as follows:

δh(ci, cj) = z(peak(cj))− z(peak(ci)) (3.6)

If δh > 0, then the tree has grown since the first scan, and if δh < 0, then the tree has

been cut back by some natural or human force. δh = 0 is highly unlikely even if a tree has

already reached its height limit since the scanning is inconsistent and the points usually

do not fall to the same exact coordinates in different inspections.

The height difference for individual trees of the sample area is visualized in

Figure 3.22.

3.4.10 Difference between tree volumes

Once each and every one of the trees in the examined area are located, we are able

to calculate their individual and aggregate canopy volume. This calculation can only be

done in seasons when there are actual leaves on the trees since they build up the canopy

and provide the volume.

Calculating the volume of a tree is a difficult task if done very accurately since the

clusters that represent tree canopies can be considered completely irregular polygons. It

would be a very high-demanding task to calculate the exact volume of a cluster regarding

computational costs and execution time, so we took advantage of the raster grid instead.

Let Vci be the volume of cluster ci, z(pn) be the height of a point and |ci| be the total

number of points in the cluster. The computation of Vci is described by Equation 3.7.

Vci =
|ci |

∑
n=1

z(pn) ∗ 0.52 (3.7)

As mentioned in Section 3.2, the real distance between two grid points is 0.5m which is

why the multiplication is done by 0.52. After that, the total volume of the trees in the

former epoch is extracted from that of the latter epoch, and similar conclusions can be

drawn from the difference as in the case of tree height changes.

The described method of volume calculation is an estimation, as it adds the space un-

der the canopy and around the tree trunk, and also a smaller amount around the canopy

to the total volume. However, the distortion is present in both observed epoch, which re-

54

3. Change analysis of buildings and vegetation in airborne point clouds

duces the error once the extraction is executed. More accurate volume estimations could

be achieved through 3D analysis of the tree crowns, as a planned future work described

in Section 3.9.

3.5 Implementation

The implementation was carried out in standard C++, based on the open-source

GDAL/OGR15 geospatial and geoprocessing software library for the input and out-

put management of the spatial data. This decision was based on the facts that the

GDAL/OGR library is actively developed and maintained, is used by numerous well-

known applications (QGIS, GRASS GIS, MapServer, ArcGIS, etc.), provides a well-

documented native C/C++ API, and the C++ language itself is among the most widely

used programming languages both in general and in the geospatial community.

Aiming to create an easily reusable, robust, extendable, high-abstraction level,

operation-based software library for raw point cloud and DEM processing, the imple-

mentation was done in a new software library and toolset: the PointCloudTools geospatial

framework. Source code is publicly available on GitHub16 and released under the BSD-3

license. The project was tested to build and run on Windows 10/11 and Ubuntu Linux

18.04/20.04/22.04 LTS.

3.5.1 The PointCloudTools library

The CloudTools.DEM defines an architecture of DEM processing with an operation-

based concept in focus. The module provides various base classes modularized based on

their input and output types (visualized in Figure 3.23).

Operation (Any → Any) is the most general class that serves as the base class of all

other operation classes. Operation separates the evaluation of a task into 2 phases:

i) preparation, which is usually a short activity (e.g. opening input data, calculating

output size) and ii) execution, which carries out the full operation. Operation is an

abstract class with two matching overridable abstract methods: onPrepare() and

onExecute().

Calculation ({DEM} → Any) inherits directly from Operation. It extends the prepara-

tion phase from Operation by opening source data and if there are multiple source

datasets (sourceDatasets), it also performs validation. (Checks whether all sources

have the same pixel resolution, use the same projection system, etc.) The input

15http://www.gdal.org/
16https://github.com/GISLab-ELTE/PointCloudTools

55

http://www.gdal.org/
https://github.com/GISLab-ELTE/PointCloudTools
http://www.gdal.org/
https://github.com/GISLab-ELTE/PointCloudTools

3. Change analysis of buildings and vegetation in airborne point clouds

metadata is read from the source header(s) and then loaded into sourceMetadata().

Multiple input sources do not have to cover the exact same area, but they must

intersect. The intersection will be the target area whose metadata is loaded into

targetMetadata().

SweepLineCalculation is a subtype of Calculation. It completes the execution

phase by reading all source data. It expects an algorithm (computation) in its

constructor17 which is then executed iteratively on a sweeping window of the

sources.

DatasetCalculation also inherits from Calculation, but the complete source

datasets for the target area are read and passed to the computation, which is

then performed on a single call.

Transformation ({DEM} → DEM) inherits from Calculation. The addition to

Calculation is that there is a target DEM dataset (targetDataset) for the target

area.

SweepLineTransformation is the correspondent transformation class for

SweepLineCalculation. It is completed with an output file in which it

writes the output data.

DatasetTransformation is the correspondent of DatasetCalculation with writing

the results into an output file.

17The algorithm can be passed as a function pointer, functor or lambda expression.

56

3. Change analysis of buildings and vegetation in airborne point clouds

Fi
gu

re
3.

23
:U

M
L

cl
as

s
di

ag
ra

m
of

th
e

op
er

at
io

n
m

od
el

of
Po

in
tC

lo
ud

To
ol

s

57

3. Change analysis of buildings and vegetation in airborne point clouds

3.5.2 Architecture of the Buildings module

CloudTools.Buildings defines the structure of point cloud classification and change de-

tection, visualized in Figure 3.24. The module provides a range of classes derived from

the classes of module CloudTools.DEM. The classes follow the flow of the algorithm, which

is described in Section 3.3 and depicted in Figure 3.10.

Figure 3.24: UML class diagram of the CloudTools.Buildings module

BuildingExtraction is responsible for the DTM/DSM based object recognition. It is a

subtype of SweepLineTransformation, capable of calculating the difference of two

DEM files with a sweeping-window approach (with the window size being 1), as

described in Section 3.3.2.

Comparison is a subtype of SweepLineTransformation. It was used to calculate the

changeset by subtracting the two object filtered DEMs, as described in Section 3.3.1.

NoiseFilter is a subtype of SweepLineTransformation, capable of calculating the aver-

age noise (in height) in a given window size, and removing noisy data points – by

assigning nodata value to them, as described in Section 3.3.3.

ClusterFilter is subtype of the base Transformation class. It aggregates two

SweepLineTransformation passes: i) first it performs a binarization of the data (has

58

3. Change analysis of buildings and vegetation in airborne point clouds

data versus nodata), then ii) executes the cluster filtering on the binary layer; as

described in Section 3.3.3.

MorphologyFilter is a subtype of SweepLineTransformation, capable of performing ei-

ther a morphological dilation or erosion, parameterized by a window size and

threshold, as described in Section 3.3.4.

MajorityFilter is a subtype of SweepLineTransformation, capable of performing a ma-

jority filtering, parameterized by a window size and threshold, as described in

Section 3.3.4.

As we have seen, all steps of the algorithm are subtypes of the

SweepLineTransformation class and use the sweeping window approach, hence

requiring low memory during execution.

3.5.3 Architecture of the Vegetation module

CloudTools.Vegetation defines the structure of point cloud classification and change de-

tection, visualized in Figure 3.25. The module provides a range of classes derived from

the classes of module CloudTools.DEM. The classes follow the flow of my algorithm which

is described in Section 3.4 and depicted in Figure 3.12.

Difference is a subtype of SweepLineTransformation, capable of calculating the differ-

ence of two DEM files with a sweeping window approach (with the window size

being 1), thus having low memory requirement. Difference was used to calculate

the CHM by subtracting DTM from DSM as it is described in Section 3.4.1.

MatrixTransformation is a subtype of SweepLineTransformation, capable of perform-

ing a convolution matrix transformation on a DEM file with a sweeping window

approach. MatrixTransformation was used to decrease the number of local maxi-

mum points with a low-pass filtering as described in Section 3.4.2.

ThresholdFilter is a subtype of SweepLineTransformation, capable of erasing the points

lower or higher than a given threshold from a DEM file with a sweeping window

approach. ThresholdFilter was used to eradicate the points that are lower than an

average tree as described in Section 3.4.3.

CollectLocalMaximum is a subtype of SweepLineCalculation, capable of searching for

the local maximum points in a DEM file with a sweeping window approach.

CollectLocalMaximum was used to collect the local maximum points into a con-

tainer as described in Section 3.4.4.

59

3. Change analysis of buildings and vegetation in airborne point clouds

TreeCrownSegmentation is a subtype of DatasetCalculation, capable of constructing

a ClusterMap of trees from prefiltered CHM produced by the ThresholdFilter

and the tree top points as seeds provided by the CollectLocalMaximum. The

TreeCrownSegmentation class takes care of constructing, iteratively expanding and

merging clusters as described in Section 3.4.6.

MorphologyClusterFilter is a subtype of DatasetCalculation, capable of performing

morphological filtering – both dilation and erosion – on a provided ClusterMap and

a CHM dataset covering the affected area. MorphologyClusterFilter was used to

perform morphological opening on the previously built ClusterMap as described in

Section 3.4.7.

HausdorffDistance is a subtype of Operation, capable of calculating the Hausdorff dis-

tance of clusters in two ClusterMaps. The HausdorffDistance class was used to pair

up the clusters of the ClusterMaps constructed from AHN-2 and AHN-3 CHMs as

described in Section 3.4.8.

CentroidDistance is a subtype of Operation, capable of calculating the distance of cen-

troids of clusters in two ClusterMaps. The CentroidDistance class was used to pair

up the clusters of the ClusterMaps constructed from AHN-2 and AHN-3 CHMs as

described in Section 3.4.8.

HeightDifference is a subtype of Operation, capable of calculating the height difference

of each cluster pair in two ClusterMaps as described in Section 3.4.9.

VolumeDifference is a subtype of Operation, capable of calculating the individual vol-

ume difference of each cluster pair in two ClusterMaps and their aggregated vol-

ume difference as described in Section 3.4.10.

60

3. Change analysis of buildings and vegetation in airborne point clouds

Fi
gu

re
3.

25
:U

M
L

cl
as

s
di

ag
ra

m
of

th
e

C
lo

ud
To

ol
s.

V
eg

et
at

io
n

m
od

ul
e

61

3. Change analysis of buildings and vegetation in airborne point clouds

3.6 Results and performance

Our solution was tested in 3 hardware configurations: i) on a personal notebook com-

puter, ii) on a high-performance computing environment and iii) on a Hadoop cluster of

low-budget desktop computers. These are discussed and compared in Sections 3.6.1 and

3.6.2, respectively.

3.6.1 Desktop environment

The minimal, sequential execution environment of our program is a single-core CPU

with 1.5 GB RAM. The workflow was tested on a personal computer with a configuration

as described in Table 3.2. Although this notebook had 8 logical cores, we found that the

optimal performance is reached with 3-4 parallel processes, due to the heavy I/O load of

the workflow.

Component Model Specification

Processor Intel® Core™ i7-6700HQ 4 physical, 8 logical cores, 2.60 GHz
Memory Kingston® KVR21S15D 12 GB DDR4

Hard Disk Western Digital®

WD10SPCX
1 TB, 5400 RPM, 16 MB cache,
SATA III (6.0 Gbps)

Table 3.2: Lenovo Y700 hardware configuration

Building change detection

The average execution times measured with 3 distributed processes at each step are

shown in Table 3.3. It shows that the evaluation time of the complete workflow (including

data read and write alongside processing) took almost 2 days and required nearly 5 days

in CPU time.

Step
Wall time
(1368 tiles)

CPU time
(1368 tiles)⋆

Wall time
(3 tiles)⋆

Change detection 10.73 hours 32.20 hours 1.41 minutes
Aggregation 4.39 hours 13.18 hours 0.58 minutes
Visualization 22.74 hours 68.22 hours 2.99 minutes
Verification 9.41 hours 28.24 hours 1.24 minutes

Summary 47.28 hours 141.84 hours 6.22 minutes
⋆

Estimated values based on the wall time of the whole dataset.

Table 3.3: Workflow execution time on a desktop computer with 3 parallel processes

62

3. Change analysis of buildings and vegetation in airborne point clouds

The final output of the change detection in the built-up area for the entire Netherlands

was made publicly available at http://dx.doi.org/10.17632/yrxvhfj5jv.1, an open-

source online data repository hosted at Mendeley Data [119].

Vegetation change detection

We tested the algorithm on four territories of different sizes from the AHN dataset.

Table 3.4 contains the name and area of each territory along with performance informa-

tion for both pairing methods.18 The preprocessing steps (starting from 3.4.1, finished

at 3.4.7) were carried out concurrently for the two epochs, while the further tasks (from

3.4.8 to 3.4.10) were executed sequentially without any parallelization applied on a single

CPU core. The increase in runtime is not linear with the growth of territory size due to

the quadratic computational cost of crown segmentation in Section 3.4.6.

Name Area Pairing method Runtime

Single street 0.103 km2 centroid 3.43 sec
Hausdorff 12.85 sec

Amsterdam city center 1.937 km2 centroid 13 min 06 sec
Hausdorff 13 min 42 sec

TU Delft Campus 2.143 km2 centroid 12 min 9 sec
Hausdorff 14 min 43 sec

Delft city center 8.640 km2 centroid 8 h 11 min
Hausdorff 8 h 19 min

Table 3.4: Basic data and runtime information of the sample territories

Table 3.5 contains the results of the tree segmentation (number of detected clusters)

and the pairing carried out by different pairing methods for each sample territory. The

centroid distance pairing method turned out to be a better solution in a general scenario

with respect to both computational complexity and – contradicting our initial assump-

tions – the accuracy of the cluster pairing. Validation to ground truth data will be eval-

uated in Section 3.8.2. Hausdorff distance was proved to be a better choice for concave

polygons, such as buildings [120], since it provides the distance of actual points in a

cluster rather than a fictive centroid, which could lie outside of the edges of a concave

polygon. Our research showed that in the case of trees, where the segmented objects are

nearly always convex polygons, the simpler centroid distance can be a better approach

in cluster pairing, as the centroids give a good representing point for the middle of trees.

Increasing the horizontal threshold Thh of the spatial index search radius could improve

18Runtimes differ and show significant improvement from the result values published in [2], as the
quadtree indexing to optimize the pairing methods described in Section 3.4.8 was added later to the al-
gorithm.

63

http://dx.doi.org/10.17632/yrxvhfj5jv.1

3. Change analysis of buildings and vegetation in airborne point clouds

the results of the Hausdorff distance based pairing with the possible side-effect of mis-

pairing clusters in other cases.

Removed trees were only present among the Epoch1 clusters, while New trees were only

found in the Epoch2 clusters. These values are unrealistically high compared to the num-

ber of detected cluster pairs. Through manual evaluation, we deduced that building fa-

cades, irregular rooftops and larger statues can be misdetected as trees by our algorithm,

as also observable in Figure 3.21.

Territory
Epoch 1
clusters

Epoch 2
clusters

Pairing
method

Tree
pairs

Removed
trees

New
trees

Single street 168 173
centroid 112 56 61

Hausdorff 106 62 67
Amsterdam
city center 3 865 3 585

centroid 2 157 1 708 1 428
Hausdorff 2 170 1 695 1 415

TU Delft
Campus 3 834 4 128

centroid 2 115 1 719 2 013
Hausdorff 1 922 1 912 2 206

Delft city
center 17 375 17 634

centroid 9 878 7 497 7 756
Hausdorff 9 137 8 238 8 497

Table 3.5: Results of tree segmentation and different pairing methods at the sample
territories

Table 3.6 contains the aggregated volume and the total volume difference of both

epochs for each sample territory. Individual results should be considered as an approxi-

mation of the reality, since the volumes were calculated for the complete area of each tree,

using the height of each cell.19 However, since this distortion of data is present in both

epochs, the difference between the two aggregated values is an accurate indicator of the

overall change in biomass.

Sample territory Epoch 1 volume Epoch 2 volume Difference
Single street 80 751 m3 128 616 m3 47 866 m3

Amsterdam city center 607 223 m3 716 067 m3 108 845 m3

TU Delft Campus 1 582 340 m3 2 481 330 m3 898 989 m3

Delft city center 5 669 190 m3 8 755 340 m3 3 086 150 m3

Table 3.6: Results of volume calculation for different epochs at the sample territories

Individual height differences of trees are visualized by Figure 3.22 and Figure 3.26 for

the Single Street and the TU Delft Campus sample territories respectively.

The final output of the vegetation detection for all selected sample territories can

be found at http://dx.doi.org/10.17632/9thyzzwd5d.2, an open-source online data

repository hosted at Mendeley Data [121].

19More accurate volume estimations could be achieved through 3D analysis of the raw point clouds, e.g.
to omit the space below the tree crowns.

64

http://dx.doi.org/10.17632/9thyzzwd5d.2

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.26: Height differences of paired clusters in the TU Delft Campus sample territory

3.6.2 Distributed computing

The workflow was designed in such a way that distributed computing can be facili-

tated. While each tile is processed sequentially, the parallelization was based on the al-

ready provided tiled partitioning of the dataset, processing multiple tiles in a distributed

manner. The same method of distribution by dataset partitioning could also be applied to

aggregate the results by administrative units as described in Section 3.3.6, to generate the

static visualization presented in Section 3.7 and to validate the results with a reference

dataset as showcased in Section 3.8.

Distributed computing was tested with the building change detection algorithm, as it

was deemed more mature, optimized, with better evaluation runtimes per tile. The input

dataset consisted of the 1.368 tiles that were covered by both the AHN-2 and ANH-3

measurements. For each tile 2 ∗ 2 = 4 raster grid files were provided, as for both AHN

65

3. Change analysis of buildings and vegetation in airborne point clouds

data acquisitions both the DSM and the DTM model had to be processed. Each DEM file

allocated ca. 500 MB of disk space, the accumulated input data size was approximately

2.8 TB.

Although ANH data collection has been conducted at intervals of several years so

far, our focus here is on the efficiency of processing a nation-wide data set. Motivation

for this is that nation-wide point cloud data, such as AHN, is becoming more widely

available [122], which has the consequence that also methods that can handle this amount

of data efficiently will become more in demand. In addition, for practical applications, it

is important that intermediate large scale results can be produced efficiently, to facilitate

parameter tuning.

High-performance computing environment

The development of the methodology and tuning its parameters demanded multiple

executions and testing of the program, thus the extended waiting time of the desktop en-

vironment to receive and analyse the results was inappropriate. To accelerate the process,

more powerful computing facilities had to be involved.

SURFsara20 is a Dutch national collaborative ICT organization that provides com-

puting facilities for education and research purposes. Their LISA21 supercomputer was

utilized to further scale the distributed evaluation of the workflow. The LISA cluster con-

sists of 489 nodes, 7856 cores with a peak performance of 149 TFlops and uses the Debian

Linux operating system. The configuration of a typical node is described in Table 3.7.

Component Model Specification

Processor Intel® Xeon®

E5-2650L & E5-2650 v2
8 physical, 16 logical cores,
1.80 GHz & 2.60 GHz

Memory N/A 32 GB / 64 GB

Local storage⋆ N/A 750 GB / 850 GB

Network InfiBand FDR
56 Gbps bandwidth,
1.3 µsec latency

⋆
Temporary data only, input dataset was available on shared network drive.

Table 3.7: SURFsara LISA node hardware specification

The parallelization and communication between the nodes – implemented through

the platform-independent MPI22 protocol – required a thoughtful design and benchmark-

ing of scenarios, taking the I/O operation sensitivity of the computation into account to

avoid a bottleneck on the data storage access or on the network bandwidth. In Table 3.8

20http://surfsara.nl
21https://userinfo.surfsara.nl/systems/lisa/
22Message Passing Interface, standard available: http://mpi-forum.org/

66

http://surfsara.nl
https://userinfo.surfsara.nl/systems/lisa/
http://surfsara.nl
https://userinfo.surfsara.nl/systems/lisa/

3. Change analysis of buildings and vegetation in airborne point clouds

we present multiple job configurations and their comprehensive execution time with ap-

proximately the same process count.

Nodes
Processes
per node Processes

Tiles
per process Overall time

30 5 150 9.12 2.38 hours
22 7 154 8.90 3.23 hours
15 10 150 9.12 4.90 hours
10 15 150 9.12 4.80 hours

Table 3.8: Workflow execution time on the SURFsara LISA cluster

As shown, the runtime could easily be reduced to 1 hour or less. Such reduction was

essential to efficiently develop a workflow based on large scale initial results. We can

observe that even though all nodes contained 16 logical cores, excessive I/O management

resulted in degradation of effectiveness when too many processes were launched per

node.23

Hadoop cluster of inexpensive computers

As an alternative for a supercomputer, we also experimented with a Hadoop24 cluster

of low budget desktop computers. We utilized Hadoop’s MapReduce framework, wrap-

ping our existing solution as a mapper. The I/O was managed by the Hadoop Streaming

API.

The major benefits of the Hadoop cluster compared to an HPC is that it is assemblable

from inexpensive components, easily scalable for increasing amount of input, the file

distribution is handled by HDFS, and jobs are launched in a data-local manner (reducing

stress on the network). The drawbacks are that all input data for a tile (4 raster DEMs)

must be bundled into a single file for efficient reading from the HDFS, and it is also

way more difficult to communicate between processes on separate nodes, as Hadoop

was intentionally not designed for this. Our Hadoop cluster consisted of 41 inexpensive

desktop computers, their technical specification is displayed in Table 3.9.

In this measurement, a single Hadoop job was executed simultaneously on each node

due to limited computational capacity and internal memory. The total execution time was

13.14 hours, which is between the desktop and HPC configurations, as expected.

23Note that while nodes were exclusively allocated for jobs on LISA, we had no control over network
traffic of other jobs, which could also affect the measurements.

24https://hadoop.apache.org/

67

https://hadoop.apache.org/
https://hadoop.apache.org/

3. Change analysis of buildings and vegetation in airborne point clouds

Component Specification

Nodes 1 master and 40 slave
Processor (per node) 2 physical, 4 logical cores, 1.20 GHz
Memory (per node) 4 GB DDR3
Storage 4 TB HDFS, SATA II (3.0 Gbps)
Network 100 Mbps bandwidth

Table 3.9: Low budget desktop PC hardware configuration for Hadoop cluster

3.7 Visualization of results

In order to enable a straightforward solution for interpreting and analyzing the results

of building change detection, an interactive online visualization25 was created; hence, an

average personal computer and a web browser are sufficient for the objective. Through

this interface users can either display the raw, building level output of the workflow or

view a multi-scale vector map of the aggregated results by administrative units of mu-

nicipalities, districts and neighbourhoods. Further functionalities consist of navigating,

zooming, setting a base layer and selecting a location. The latter option provides infor-

mation about the marked area, which depending on the type of overlay can be the exact

altimetry difference or the accumulated values of the administrative unit – as described in

Section 3.3.6. In Figure 3.27a the city center of The Hague is presented with the altimetry

elevation of the reconstructed central railway station building selected. In Figure 3.27b

the municipality aggregation view is displayed with details about Delft.

A similar interactive online visualization of the vegetation detection results was cre-

ated for the larger Delft city center territory26. Through this interface, the users can view

the raw, tree level output of the algorithm and fetch the exact altimetry difference of a

marked location. A screenshot of the web application is depicted in Figure 3.28.

The dynamic visualization of such massive datasets is highly computation intensive

and would require a powerful server cluster to provide a smooth user experience when

browsing the website. Since user edit or other source of modification is not expected on

the output of our workflow, the on-access recalculation of the visualization is superflu-

ous, instead it should be rendered once and served statically. By pre-generating the web

tiles for each accessible zoom level a tiled web map (also known as slippy map) can eas-

ily be constructed, implementing a similar concept as e.g. Google Maps or OpenStreetMap

[123]. These tiles can also be automatically and dynamically generated (and cached) with

an appropriate tool like the GeoServer, and then served through the widely applied Web

25Available at https://gis.inf.elte.hu/ahn/ahn_urban_nl.html
26Available at http://gis.inf.elte.hu/ahn/ahn_veg_delft_wms.html.

68

https://gis.inf.elte.hu/ahn/ahn_urban_nl.html
http://gis.inf.elte.hu/ahn/ahn_veg_delft_wms.html

3. Change analysis of buildings and vegetation in airborne point clouds

(a) Detailed, building-level altimetry changes in The Hague

(b) Aggregation of changes on municipality level

Figure 3.27: Web interface of the visualization

Figure 3.28: Interactive tool for detailed, vegetation level altimetry change analysis.
Showcased on the Delft city center sample territory.

69

3. Change analysis of buildings and vegetation in airborne point clouds

Map Service (WMS) standard protocol. Aggregated views are more beneficial to be served

as vector data, so the polygons can be annotated by the attributes of accumulated values.

3.8 Validation and discussion

For the validation of the results, official national and municipal registers from the

Netherlands were used, containing reliable reference data.

3.8.1 Validation of building detection

To assess the quality of our method defined in this section, a validation of results has

been performed using the TOP10NL27 (Dutch Topographic Basemap) dataset as reference.

The nation-wide TOP10NL consists of detailed topographic features – including a build-

ing layer – of the Netherlands at scales between 1:5,000 and 1:25,000.

Since the AHN and TOP10NL projects are independent and do not share a common

data acquisition plan, the best matching datasets were selected for verification. As AHN-2

measurements were acquired between 2007-2011 [102], while AHN-3 was collected be-

tween 2014-2019 [103], 3 epochs of the TOPNL datasets from May 2009, November 2015

and September 2020 were utilized. A feasibility study on the accuracy of the TOP10NL

dataset and its utilization with a different dataset was previously researched by [124].

The validation was evaluated based on a ratio of detected changes in the urban areas

covered by the building layer of any selected epoch of the TOP10NL datasets, weighted

with the absolute value of the altimetry difference for each location. Let RES be the set

of (x, y) coordinates for the pixels marked with detected building changes by our algo-

rithm and REF be the set of (x, y) coordinates for the pixels marked as buildings in the

TOP10NL datasets. Cx,y still denotes the altimetry change for that location, as introduced

previously. The formula for computing the ratio is shown in Equation 3.8.

ratio =
∑(x,y)∈RES∩REF|Cx,y|

∑(x,y)∈RES|Cx,y|
(3.8)

The verification was showcased on 3 selected cities and its surroundings (Delft, The

Hague and Amsterdam) as well as on the whole available AHN dataset. The results

are shown in Table 3.10. To compensate for the inaccuracy of positioning between the

datasets, which results in not properly overlapping buildings, the algorithm was also exe-

cuted after applying a 1 meter morphological dilation as a small tolerance to the building

boundaries in TOP10NL. The total and average volume change were also computed for

these areas, as summarized in Table 3.11. Only changes for correctly detected buildings

27http://www.kadaster.nl/-/top10nl

70

http://www.kadaster.nl/-/top10nl
http://www.kadaster.nl/-/top10nl

3. Change analysis of buildings and vegetation in airborne point clouds

were accumulated, using the absolute value of the volume change, i.e. without separating

constructions and demolitions.

Location Covered area Ratio without dilation Ratio with dilation⋆

Delft 62.50 km2 87.81% 91.37%
The Hague 93.75 km2 88.75% 92.48%
Amsterdam 218.75 km2 77.63% 80.22%
The Netherlands 41,865 km2 66.99% 70.05%
⋆

Reference building boundaries dilated by 1 meter, as described in Section 3.8.1.

Table 3.10: Validation results with TOP10NL used as reference data

Location Volume change Average change

Delft 6.15 km3 98,400 m3/km2

The Hague 11.78 km3 125,653 m3/km2

Amsterdam 36.37 km3 166,262 m3/km2

The Netherlands 912.33 km3 21,784 m3/km2

Table 3.11: Total and average absolute volume change in the validation areas for
correctly detected buildings

Discussion

As expected, the proposed method of building change detection produces better val-

idation results for urban areas in general. In rural or agricultural areas there are rela-

tively few buildings, and in comparison there are more objects, which could be misde-

tected as buildings, such as small artificial hills. When comparing the 3 examined cities,

Amsterdam produced worse results than Delft and The Hague. The main reason for this

is that in the port area of the city, massive industry related changes were detected be-

tween the two AHN epochs examined, containing numerous false positive detections

(e.g. large hills of debris). The main reasons of false positive detections in urban areas

were the following (for visual examples, see Figure 3.29):

• We detected changes not only in buildings, but also in other structures (e.g. bridges,

overpasses), which are not marked in TOP10NL.

• While smaller moving objects, such as cars, were successfully filtered by our

method, larger objects such as cargo ships or aircraft stationed at airports were de-

tected.

• Beside these vehicles, artificially created hills, naturally moving dunes on the beach,

etc. could also be detected by our approach.

• The AHN and TOP10NL datasets were not created at the same epoch, there can be

multiple years of difference for some regions.

71

3. Change analysis of buildings and vegetation in airborne point clouds

• In rare cases, we have found existing buildings not registered in TOP10NL.

(a) Port area in Amsterdam, notice hills of
debris, contianer ships

(b) Urban area in Amsterdam, notice
overpass and railway bridge

Figure 3.29: Reasons of possible false positive change detections in buildings

3.8.2 Validation of vegetation detection

To assess the quality of our method, a validation of the results has been performed

using the city-wide Trees and Main tree structure datasets from the Amsterdam open geodata

portal28 as reference.

• The Trees dataset contains various information about the trees that are managed by

the municipality of Amsterdam, including their location and optionally the year

of planting, the height and the radius of their crown. This dataset was useful to

calculate a proper estimate of true positive and false negative detections.

• The Main tree structure dataset describes the main road network in Amsterdam

where the trees are managed by the municipality and local regulations of planting,

replacing, rootable space, allowed trunk circumference, etc. apply. This dataset was

useful to filter out trees in private properties, so the proper rate of false positives

could also be calculated.

Validation was evaluated by comparing the coordinates of detected trees in the

Amsterdam city center sample territory for the AHN-3 dataset with the coordinates of

the registered trees in the reference Trees dataset. We consider only those trees that i)

lie within the 20 meter buffer of the road network29 in the Main tree structure dataset; and
28https://maps.amsterdam.nl/open_geodata/
29The Main tree structure dataset describes the road network as a vector layer of linestrings.

72

https://maps.amsterdam.nl/open_geodata/
https://maps.amsterdam.nl/open_geodata/
https://maps.amsterdam.nl/open_geodata/

3. Change analysis of buildings and vegetation in airborne point clouds

ii) were planted before 2015, since the AHN-3 data acquisition was completed in that

year for Amsterdam. To compensate for the inaccuracy of positioning between the input

and reference datasets, we allowed a tolerance of 3 meters between the centers of the

segmented clusters and the registered coordinates in the reference dataset.

For the examined territory, our proposed algorithm detected 1738 individual trees.

Among the 1411 trees contained in the reference dataset, 1129 of them (80.01%) were

successfully matched by our algorithm. There were 282 false negative (19.99%) and 609

false positive (35.04%) detections.

Discussion

In case of vegetation detection, through manual examination of the results we con-

cluded that the most common reasons for misdetection of trees were the following (for

visual examples, see Figure 3.30):

• Their crown was too small horizontally and was removed after the segmentation

phase of the algorithm.

• Their height was too small, and only a few pixels reached the 1.5 meter threshold in

the DEM. Hence, they were considered small clusters and removed. (See Location 1,

as this tree was only planted in 2015 according to the reference dataset.30)

• The distance between the detected cluster center and the reference coordinate of

the tree was over 3 meters – see Location 2. This usually occurs for larger trees as

the manually recorded reference position is sometimes on the boundary of the tree

crown (or even outside of it).

• Building facades could be misdetected as trees in some cases – see Location 3.

Enhancements could be made by implementing a comprehensive system that com-

bines building and tree detection, or by employing 3D analysis to evaluate the iden-

tified tree candidates.

• Larger and really close tree crowns could confuse the merging heuristic in

Section 3.4.6, and misdetect such trees as a single tree – see Location 4.

Comparison with other methods

We compared the results of our algorithm with other existing methods we previously

discussed in Section 3.1.3 to assess the effectiveness of the proposed method. Table 3.12

30In Figure 3.30 the tree at Location 1 may appear visually larger because the base satellite image used for
this image was taken in 2023.

73

3. Change analysis of buildings and vegetation in airborne point clouds

Figure 3.30: Example false positive and false negative change detections in vegetation

summarizes the measured differences. We investigated the extraction, matching, com-

mission, and omission rate defined as Equations 3.9-3.12, in accordance with [78].

Extraction rate (ER) =
Next

Nre f
· 100% (3.9)

Matching rate (MR) =
Nmatch

Nre f
· 100% (3.10)

Commission rate (CR) =
Ncom

Next
· 100% (3.11)

Omission rate (OR) =
Nom

Nre f
· 100% (3.12)

Next, Nmatch, Ncom, Nom, and Nre f are the cardinalities of extracted, matching, false

positive (commission), false negative (omission), and reference trees, respectively.

The experimental results of Methods #1-#7, i.e. local maximum + filtering [73], local

maximum + region growing [75], local maximum + multiscale CHM [72], local maximum

+ watershed [77], segmentation + clustering [76], local maximum with 3 × 3 kernel, and

local maximum with 5 × 5 kernel [74] were previously benchmarked by [72]. Method #8,

i.e. watershed + 3D spatial distribution [78] is a state-of-the-art method.

The experimental results show that our proposed algorithm significantly outperforms

the previous methods regarding the matching rate and omission rate of tree segmenta-

74

3. Change analysis of buildings and vegetation in airborne point clouds

ID Method ER MR CR OR
1 Local maximum + Filtering 51 45 9 59
2 Local maximum + Region growing 57 43 20 61
3 Local maximum + Multiscale CHM 101 46 61 57
4 Local maximum + Watershed 86 49 49 55
5 Segmentation + Clustering 139 53 95 51
6 Local maximum with 3 × 3 kernel 154 54 113 51
7 Local maximum with 5 × 5 kernel 52 41 16 63
8 Watershed + 3D spatial distribution 107.8 67.6 37.3 32.5
9 Our proposed algorithm 123.2 80.0 35.0 20.0

Table 3.12: Comparison of the results of previous tree segmentation methods and our
algorithm

tion, while still producing an acceptable extraction rate and commission rate, comparable

to other state of the art methods. Considering the robustness in execution time, evalua-

tion area and the independence from tree species, the proposed method has multiple

advantages.

3.9 Conclusions

The goal of the research was to develop an automated and robust algorithm for the

recognition of buildings and trees in large urban areas, and their respective change detec-

tion of elevation. The algorithm uses preprocessed DEM files instead of raw point clouds

to decrease computational complexity. The main results of this chapter can be summa-

rized as follows:

• A separate algorithm pipeline was defined for object recognition and change de-

tection in urban areas, based on digital elevation models as input data. In case of

vegetation, it included a novel approach for segmenting trees with multiple local

maximum points and overlapping trees based on both a horizontal and vertical

distance between the formed clusters.

• The proposed solution was evaluated at various selected sample locations in mul-

tiple cities in the Netherlands (Delft, The Hague and Amsterdam).

• The algorithms provided representative data of the quantifiable changes (i.e., object

presence, height, and volume change).

• To validate the results, comparisons were made with official national or municipal

registers. For building detection, a comparison was made with the building layer

of the TOP10NL topographic dataset, which showed a match of 70% in general and

75

3. Change analysis of buildings and vegetation in airborne point clouds

over 90% in urban areas. For tree recognition, the public register of Amsterdam was

used, which gave a success rate of over 80%.

• A robust, automatized, open-source software framework was presented that is ca-

pable of processing large datasets efficiently in terms of computer resources (re-

stricted memory requirement). It can also be easily executed on a distributed envi-

ronment.

• The assessment was carried out on a multiple magnitudes larger area compared to

most similar research. In case of vegetation this meant a city or district level, while

for the analysis of the built-up area even the processing of the complete nation-wide

Dutch AHN altimetry archives (over 40.000 square kilometers).

• Two different distributed approaches (HPC and a Hadoop cluster) were tested for

distributed processing. Using the LISA supercomputer, the processing time for the

complete AHN-2 and AHN-3 datasets for building recognition and change detec-

tion was only 2.38 hours.

• An interactive web-based visualization was also developed and made publicly ac-

cessible as a further added value of the work.

Thesis 2. I propose a methodology to automatically evaluate altimetry change detection of mas-

sive multitemporal datasets and create a robust algorithm for building and tree segmentation,

targeting especially large urban and suburban areas, but applicable generally to any kind of area.

As example measurements, the multi-epoch nation-wide Dutch altimetry archives were selected

for demonstration, as these contain data points on the magnitude of trillions, resulting in several

terabytes of data. The software library developed to validate the thesis was made publicly available.

Ongoing future work includes execution of the tree change detection pipeline on

the complete territory of the Netherlands. This requires performance improvements, es-

pecially in the tree crown segmentation step and through the parallelization of certain

phases of the algorithm (e.g. tree crown segmentation, pairing of clusters). Then the con-

current processing of non-overlapping areas (e.g. AHN tiles) would enable large-scale

execution of the algorithm in an HPC environment, similar to the building change detec-

tion in Section 3.6.2.

Building detection could be performed based solely on the DSM dataset, replacing the

DTM based object detection described in Section 3.3.2. Therefore, the processing of DTM

files could be omitted, lowering the prerequisites of the proposed algorithm, meanwhile

reducing the amount of data to be processed nearly to half. A prototype for a contour-

based building detection algorithm fulfilling this criteria was implemented by one of

76

3. Change analysis of buildings and vegetation in airborne point clouds

my supervised master students [125], but is not part of this dissertation. Further work

could also address special cases of building detection on tile boundaries and their correct

merging if deemed necessary.

As a continuation of the presented tree detection workflow, the potential trees de-

tected based on 2.5D analysis (and their environment) could be extracted from the orig-

inal 3D point cloud for further examination, thus increasing the accuracy of the final

result. With this approach we could combine the efficiency of the 2.5D analysis and the

accuracy benefit of the 3D analysis.

Combining the output of building and tree recognition could also improve each other.

For example, artificial objects (typically building facades) can distort the results of veg-

etation detection with false positive cases. Therefore, filtering vegetation detected to be

really close and significantly overlapping with buildings could improve the commission

rate of the algorithm.

77

Chapter 4

Recognition of railroad infrastructure

in MLS point clouds

Railroad transportation is one of the most popular methods both for passenger trav-

eling and cargo shipment. Public railroad transportation provides annually around 8 bil-

lion unlinked passenger trips and over 400 billion passenger-kilometers in the EU [126],

together with around 390 billion tonne-kilometers in railway freight transport [127].

Regular monitoring and surveillance of the railroad infrastructure is crucial for safety

concerns and accident prevention. Nowadays, this task is still carried out by expensive

and time consuming manual visual inspections in many countries.

When the LiDAR scanner is attached to a moving vehicle (e.g., a car or train), it is

also referred to as mobile laser scanning (MLS). Such systems may also consist of two

or more sensors to increase point density and eliminate dead spaces during scanning.

Supplementing such a system with a navigation unit consisting of an integrated global

navigation satellite system (GNSS) and an inertial navigation system (INS), a so called

mobile mapping system (MMS) is formed, which is capable of recording dense point clouds

with high positional accuracy while the sensors are moving.

Automated detection of railroad infrastructure has been addressed based on LiDAR

point clouds acquired both by mobile terrestrial laser scanning [14, 15] or low-altitude

aerial laser scanning, usually obtained from helicopters [128, 129]. Beside the general-

ized approaches, specialized algorithms on some characteristics of the surrounding en-

vironment have also been developed, optimizing their results in rural environments [14,

5] or in urban environments [130]. Either the powerline cable or the rail recognition in

these studies depends on the previously calculated results, usually the position of the

other. The laser pulse return intensity [131] of the LiDAR measurements or auxiliary data

sources, like high resolution ortho-imagery for RGB data could also be involved [132,

133].

78

4. Recognition of railroad infrastructure in MLS point clouds

These state-of-the-art methods can provide precise results, but their evaluation time is

usually considerably high (magnitude of 5-10 minutes) even for relatively small railroad

segments of a few hundred meters due to the heavy computational load. Developing

concurrent algorithms can decrease the evaluation time resulting from the extensive size

of the datasets [16].

The research compares existing algorithms and contributes to the development and

comparison of automated data-driven methods based on LiDAR point clouds for railroad

fragmentation and infrastructure recognition. The proposed solution of our study focuses

on the robustness and automation of the algorithm, through minimizing the assumptions

(spatial relations between the cables and rail, flatness of the ground, known trajectory of

the train and thus the rail tracks, etc.) These aspects also enable the easy parallelization for

the processing of larger railroad segments. Results are evaluated by their computational

efficiency and the accuracy of the segmented objects.

4.1 Related work and background

The railway structure is segmented for further automated processing, to support the

examination of individual components. These may apply from rail track and overhead

cable analysis to inspections related to the maintenance of buildings and stations, and

to the equipment necessary for safe traffic on open track. Certain elements of the infras-

tructure are easier to separate from the environment, but there are more complex parts,

such as the rail pair, which only slightly emerges from the rail bed. A high-precision and

high-density point cloud is required for a proper classification. In most research papers,

a position-based segmentation is performed, which is best suited for point clouds with a

low error rate.

In recent years, multiple commercial MLS systems – such as Optech’s Lynx Mobile

Mapper [134], IGI’s RailMapper [135], and Riegl’s VMX-450-Rail – have been adapted

for railway applications through the use of high-end POS architectures and sophisticated

data processing techniques, producing high quality point cloud while minimizing the

negative impact of GNSS outages on data accuracy.

4.1.1 Segmentation of overhead cables and rails on open track

Rural areas account for a significant portion of rail traffic. This means that most of the

measured point cloud data contains vegetation. Arastounia [14] preferred algorithmic

recognition over pattern recognition in his work, taking advantage of the characteristics

of a simple (not urban) environment for an open track. He shows that it is not necessary

to use each type of metadata of the point cloud measurement to identify and segment the

79

4. Recognition of railroad infrastructure in MLS point clouds

various overhead cables (contact cables, catenary cables and return current cables), and

also the masts and the cantilevers – as visualized in Figure 4.1. The approach described

in the paper uses a purely position-based segmentation without any intensity values or

color data. While this simplifies the calculation, as a mentioned disadvantage, the false

positive recognition of nearby trees occurs. Arastounia also presents an algorithmic solu-

tion to recognize the rail bed and the rail tracks. First, the rail bed is identified, followed

by the object recognition of the rail tracks through searching a local neighbourhood anal-

ysis, expecting the rail tracks to emerge slightly from the bed.1 Cable detection follows

and depends on the position of the detected rail tracks.

Figure 4.1: Key components of railroad infrastructure [16]

Validation on the sample open track showed 95% accuracy in the detected infrastruc-

ture. Poor sampling (low point spacing), occlusions, and object intersections were deter-

mined as the three primary causes of non-perfect recognition. Regarding performance,

the method is considerably slow, since it requires approximately 3 hours for a relatively

small railroad segment of 550 meters due to the heavy computational load – as it was

revealed in a later publication by the same author [16].

1The paper mentions that a high density and precision input point cloud is required for proper operation.

80

4. Recognition of railroad infrastructure in MLS point clouds

Detecting railway switches has received little attention from the scientific community,

either by not addressing them at all in state-of-the-art papers or only considering them

as potential future research projects [15, 136, 137].

In our previous work [5], we also studied algorithms for segmenting railroad cables

on open tracks. The solution defines an algorithm pipeline, in which implemented fil-

ters can be executed linearly in succession, producing the cables as the final output. The

methodology of the approach is based on position-based classification is general, how-

ever, the effectiveness was improved with overview cuts. The overview cutting of the

cable detection is done in such a way that data loss can be completely avoided with ca-

bles above each other: the detected cables are extracted from the point cloud, and then

the second pass of the overview detection is executed – iteratively, until a new cable is

found. Similarly to Arastounia’s algorithm, no intensity or color information was used

for the point cloud. However, the execution time is multiple magnitudes better than it,

measured in seconds for a sample area of a few hundred meters long distance.

4.1.2 Segmentation of railway infrastructure in complex environments

In their work a year later, Arastounia and Oude Elberink [130] published a segmenta-

tion algorithm that also works well in the city. Their improved work can segment not only

open tracks, but also railway section with buildings, vehicles and tunnels. Beside vegeta-

tion, cars and humans were also present at e.g. road intersections as a new environment

required to be handled correctly. Cable detection still depends on the result of the rail

track recognition. The presented solution works well in complex environments and has

an average accuracy of 97%. This improved solution also performs better in terms of ex-

ecution time, since a coarse classification is performed first, to group points into 3 classes

for the trackbed, contact cables and catenary cables. Therefore, the number of points that

need to be analyzed in more detail in later steps are reduced. However, the additional

algorithmic complexity included in handling urban environments increased overall exe-

cution time, and the proposed solution required approximately 5 hours for another 630

meter long railway segment.

In his subsequent research, Arastounia created a faster algorithm that could segment

the railway environment even in complex environments while maintaining accuracy [16].

This approach highly depends on the previous solutions but enables concurrent recogni-

tion of the rail tracks and the overhead cables. The method could be summarized with

the following major steps:

1. First the track bed is detected for a smaller portion of the section. Then the height-

based coarse classification of the point cloud is performed.

81

4. Recognition of railroad infrastructure in MLS point clouds

2. From the track bed class, the starting points on one side of the rails tracks are rec-

ognized.

3. Requiring that the overhead cable is located above the railroad and between the rail

tracks, its starting point is also identified.

4. The algorithm then simultaneously recognizes the track and the overhead cables.

Remark. The method uses a coarse classification similar to described in [130], but with a

slight modification. The original classification assumes that the area’s altitude is roughly

the same everywhere, without bigger changes. This can be proven false in mountainous

areas, so the method is applied to small portions of the dataset, where the height differ-

ence between the rail tracks and the overhead cables remains constant.

Compared to the previous model-driven approaches – which are computationally

more intense – this solution is fully data-driven (region growing) that simultaneously rec-

ognizes a pair of rails and the overhead contact cable, which takes advantage of basic

characteristics of rail tracks and cables for their identification. As a result, the execution

performance is finally significantly increased to minutes instead of hours.2

4.1.3 Examination of the structure gauge

Ivo, Nikolaus, and Gerald published multiple papers [138, 139] describing their ex-

isting system used for structure gauge (also called the minimum clearance outline) detection

and examination based on LiDAR devices. In their research they work with Riegl VMX-

250 and VMX-450 laser measuring instruments. Point cloud processing was primarily

focused on determining the rail level (top of the rails), followed by recognizing the track

axis (center of the two rails).

The clearance profile of the evaluated track is checked by an automated program with

graphical display. It marks the points within the clearance profile with different colors,

which it determines on the basis of the rails, more precisely from the central axis of the

rail. During their work, they found that it was possible to automate the evaluation of the

LiDAR-based measurements.

Strach and Grabias [140] are dealing with the exploration of a railway structure gauge

within the city. They performed measurements on a tramway based on LiDAR measure-

ments. In their research, they studied the position of poles alongside the tramway to

ensure that trams do not get stuck even in curves with a small radius.

2The enhanced runtime is 5 minutes instead of 3 hours in rural environment and 30 minutes instead of 5
hours in urban environment.

82

4. Recognition of railroad infrastructure in MLS point clouds

4.2 Dataset description

The sample LiDAR datasets used in this study were collected by the Hungarian State

Railways with a Riegl VMX-450 high density mobile mapping system (MMS) mounted on

a railroad vehicle (shown in Figure 4.2), operating at 60 km/h. The imaging unit was com-

posed of two 360◦ field of view laser scanners and two high-resolution cameras. The nav-

igation unit consisted of an integrated global navigation satellite system (GNSS) and an

inertial navigation system (INS). The sensor was capable of recording 1.1 million points

/ sec with an average 3 dimensional range precision of 3 mm and a maximum thresh-

old of 7 mm. The average positional accuracy was 3 cm with a maximum threshold of 5

cm. The acquired point clouds contain the georeferenced3 spatial information (3D coor-

dinates) with intensity and RGB data attached to the points.

Figure 4.2: For technical reasons, the Riegl VMX-450 MMS sensor was mounted on a car,
which was placed on a carriage

Two datasets from different topographical regions of Hungary were selected and used

in the research. Satellite views of the locations are depicted in Figures 4.3 and 4.4.

Dataset 1 is the Szabadszállás - Kiskőrös dataset, which covers an approximately 29 km

long and 130 m wide rural railroad segment in Southern-Central Hungary and con-

tains ca. 2.5 ∗ 109 points. This area is generally flat with minimal to no slopes on the

rail tracks.

Dataset 2 is the Szentgotthárd neighbourhood dataset, which covers an approximately 5 km

long and 90 m wide, partially rural, partially suburban railroad segment in Western

3In the Hungarian national spatial reference system EPSG:23700.

83

4. Recognition of railroad infrastructure in MLS point clouds

Hungary and contains ca. 0.8 ∗ 109 points. Here, at the foothills of the Alps, the

topography is more varied, and the sample contains slopes.

Figure 4.3: Satellite view of the Szabadszállás - Kiskőrös sample dataset

Figure 4.4: Satellite view of the Szentgotthárd neighbourhood sample dataset

The complete datasets used in this research are proprietary, but the selected seg-

ments used for the results and verification are made publicly accessible. Datasets used in

Sections 4.3 and 4.4 to reproduce results can be found at http://dx.doi.org/10.17632/

ccxpzhx9dj.1, an open-source online data repository hosted at Mendeley Data [141].

84

http://dx.doi.org/10.17632/ccxpzhx9dj.1
http://dx.doi.org/10.17632/ccxpzhx9dj.1

4. Recognition of railroad infrastructure in MLS point clouds

4.3 Methodology of infrastructure recognition

The proposed methodology of our research contains 4 major processing steps [3]: i)

railroad fragmentation receives a single large input point cloud and fragments it at the

curves of the rail track. Therefore, the subsequent processing steps, ii) cable recognition

and iii) rail recognition will receive multiple smaller inputs, containing a mostly straight

segment of the railroad. Cable and rail recognition can be independently evaluated and

optimized to run in parallel. When required by the applied specific algorithm, cable

recognition might depend on the result of rail recognition (or vice versa).4 This optional

dependency disables direct parallel execution of cable and rail detection algorithms for

the same area. However, in the case of a large amount of input fragments, where the

complete dataset cannot be analyzed at once due to its size, this will not hinder the paral-

lelization of the entire process. The final follow-up processing step, iv) is the fault analysis

of the railroad infrastructure, to identify possible deviations of the railway infrastruc-

ture from the regulations and standards. The described workflow of the methodology is

depicted in Figure 4.5.

Figure 4.5: Workflow diagram of the processing steps

4Especially rail recognition could benefit from the position of the overhead cables, as they are more diffi-
cult to segment from their surroundings.

85

4. Recognition of railroad infrastructure in MLS point clouds

The following subsections 4.3.1, 4.3.2 and 4.3.3 will present these processing steps.

Error analysis will be discussed and illustrated with multiple practical examples in

Section 4.5.

4.3.1 Railroad fragmentation

The fragmentation consists of the following parts:

1. A 2D projection of the input point cloud is generated. This 2D digital elevation

model (DEM) is constructed from the point cloud along the Z axis, however, instead

of the usual inverse distance weighting (IDW) algorithm, the maximal Z coordinate

in each grid cell is used as its value.

2. Vegetation is filtered through contour detection, since it can be a problem at the

edge of the railway track: in some cases, the algorithm will not only be inaccurate,

but it may even result in false splitting points.

3. The curve of the rail track is detected using one the following methods:

Contour finding by first performing an Otsu thresholding [142], followed by the

contour finding with Suzuki’s algorithm [143].

Hough transformation [144] preceded by a Canny-edge detection [145].

Generalized Hough transformation or its Ballard-defined version [146] to be more

specific. It is a modification of the normal Hough transformation to allow it

to recognize arbitrary shapes. However, this method is not completely auto-

mated: while it recognizes the precise occurrence of the searched shape, it is

not able to rotate or resize the pattern during the search.

4. Finally, the point cloud is split based on the curve of the trajectory, resulting in one

or more output point clouds.

Remark. The detection of the railroad infrastructure (overhead cables, rails) and the fault

analysis can be carried out simultaneously on the railroad fragments. Merging the de-

tected infrastructure segments is usually not even necessary, as the final output of the al-

gorithm workflow is the locations of possible faults and anomalies in the infrastructure.

In case the recognized infrastructure itself is interesting as an output, we have found that

merging the results of the neighbouring fragments provides a good result without the

need to create overlapping fragments.

86

4. Recognition of railroad infrastructure in MLS point clouds

4.3.2 Cable recognition

There are multiple types of cables to detect above the rail track (contact cables, cate-

nary cables, return current cables), international and national legislation regulating their

relative position to each other and to the rail tracks. In this study we aim to detect all

kinds of cables, but with no expectation to distinguish them. In this subsection, 3 imple-

mented algorithms are presented and compared to achieve this goal.

Search from above with 2D Hough transform

The computational load usually grows with the dimension of the space, thus we used

an algorithm that achieves point count reduction based on a 2 dimensional projection

of the original point cloud [5]. Similarly like in Section 4.3.1, a 2 dimensional DEM is

constructed from the point cloud along the z axis, with the maximal z coordinate in each

grid cell as its value.

In order to reduce the noise, the projection grid is filtered by clearing all cells that

have less than half the maximum value. Afterwards we run a probabilistic Hough line

detection on the projection first with permissive parameters and then with strict param-

eters. Finally, a cleaning phase of the algorithm goes through all the points and counts

the cells around the actual cell with a similar value – a difference lower than a small

threshold. If this count falls below a given threshold, the cell must be removed, since on a

continuous cable, cells with similar height should be located around it. The disadvantage

of this approach would be the inability to detect cables below each other. To address this

issue, after the first run the selected points are removed from the cloud, and the algorithm

can be evaluated again to find the lower level cables also. Then, the detected cables from

consecutive runs can be merged into a single result set.

Figure 4.6 shows the main steps of the algorithm. In the first column, the first run

of the inner algorithm is displayed, and can be observed how the line detection initially

finds the cables and the trees also, but then the cleaning step removes the false positive

parts. Since our sample datasets contained three cables (with two below each other), the

second run of the algorithm was deemed necessary. The second column of the subimages

presents these results and how the additional cable was correctly located.

Hough transform for 3D line detection

This approach is based on the work of Dalitz and his colleagues [147]. They pro-

posed a new scheme based on Roberts’ minimal and optimal line representation [148] to

discretize the Hough parameter space in 3D. The discretization uses the tessellation of

Platonic solids (in 3D space these are regular, convex polyhedrons). They used the fol-

87

4. Recognition of railroad infrastructure in MLS point clouds

Figure 4.6: Mid-steps of the 2D Hough transform method

lowing iterative modification of the transform. The method works well also in presence

of outliers.

1. Discretization of the parameter space for all lines that cross the point cloud volume.

2. Hough transform of the point cloud X based on the discretization from step 1.

3. Determine the line parameters corresponding to the highest voted accumulator cell.

4. Find all points Y ⊆ X close (i.e., distance less than cell width) to the line.

5. Determine the optimal line going through Y with an orthogonal least squares fit.

6. Find all points from X close to the fitted line and their removal from X and from

the accumulator array.

7. Repeat steps 2 to 6 until X contains too few points or the specified number of lines

has been found.

Region growing algorithm

Region growing algorithms usually used for solving image segmentation problems,

since this is the first step of a variety of image analysis and visualization tasks. The algo-

rithms start with a point that meets a detection criterion to grow the point in all directions

88

4. Recognition of railroad infrastructure in MLS point clouds

or a specified direction to extend the region. These procedures are usually created for a

specific task, and thus do not have universal capability [149].

The region growing approach is based on Zhang’s and his colleagues method [150].

The original paper assumes that the trajectory of the train – and thus the rail track and

the cables – are known. Since this information is not necessarily provided (e.g. for air-

borne laser scanning), we replaced this information with a small seed point cloud of the

powerline cable as a more robust solution, from which the trajectory can be calculated at

the beginning of the algorithm with the RANSAC algorithm [151]. Since the paper was

not detailed enough, some steps were changed in the implementation. Our version of the

algorithm is summarized in Algorithms 1 and 2.

Algorithm 1 Self-adaptive region growing method, step 1
Func Find seeds (gridCount)

1: Find a line in the seed point cloud using RANSAC
2: Rotate the seed point cloud to be parallel with Y axis, using the parameters of the

found line
3: Project the seed dataset onto y axis
4: Create grids with given number, gridCount
5: Select the grids which are not empty
6: Calculate the center of the points contained by the grids

89

4. Recognition of railroad infrastructure in MLS point clouds

Algorithm 2 Self-adaptive region growing method, step 2
Func Extract cables (boxLength, maxPointsPerBox)

1: Select an initial seed point
2: Create initial bounding box with size boxLength
3: while Max Y value of cable < max Y value of point cloud do
4: Select points with biggest Y value from bounding box
5: Create new bounding box around the center of these
6: selected points
7: if Y value of new center is ≥ center of old bounding box then
8: Add boxLength to the Y value of actual seed point
9: end if

10: if The actual bounding box is empty then
11: Decrease Y value of the seed point by boxLength
12: Calculate average of X last 100 cable points
13: If a point is further by 0.5 meter than the average
14: (on X axis), remove this point
15: end if
16: if number of points > maxPointsPerBox then
17: Reduce boxLength by its quarter
18: Find points which are inside the reduced bounding box
19: if New number of points < 2 then
20: Use the new bounding box
21: else
22: Remove points with biggest X values from original bounding box
23: end if
24: end if
25: Add content of the bounding box to the cable point array
26: end while
27: Create grids with given size
28: Select the grids which are not empty
29: Calculate the center of the points contained by the grids

4.3.3 Rail recognition

Our solution is an adapted and optimized version of the proposed algorithm by

Arastounia [16]. The original algorithm assumed that the trackbed is mainly flat, with

very little variance, which we found not to be the case in our datasets. The algorithm de-

veloped was enhanced with proper slope detection and handling. The algorithm consists

of three main parts.

1. Locating the trackbed within a small subset of the data

(a) First, the railway direction axis and the start coordinate are computed. The

initial step of the algorithm requires cutting out a small portion of the dataset,

in which we detect the rail pairs. The problem emerges that without directional

data – which is not necessarily at our disposal –, it would not be defined where

to cut the dataset.

90

4. Recognition of railroad infrastructure in MLS point clouds

(b) A course classification on a subset of the cloud is performed on the basis of

the heights of the points in the cloud portion. In a railway environment, the

object with the most points should always be the trackbed, so the height of

the trackbed is determined by searching for the most common height in our

subset within a tolerance threshold of 0.75m.

2. Detecting the rail pairs in that subset

(a) Candidate seed points for the rails are selected. Since rail tracks by defini-

tion are narrow and relatively high objects, our aim is to locate points in the

trackbed, which are outliers in their respective local neighbourhoods. Given p

is point of the trackbed, this task can be achieved with the following algorithm:

i. Calculate p’s local neighbourhood, Np.

ii. Calculate Np’s covariance matrix, C.

iii. Apply eigendecomposition to C.

iv. Classifying candidate rail seed points. The smallest eigenvalue of a local

neighbourhood without a rail piece should be below a low threshold close

to zero, as the trackbed is usually constructed to have the smallest height

variation possible in the longitudinal direction due to safety regulations.

(b) Lines are detected with 2D Hough transformation. In our algorithm, first the

3D point cloud of candidate rail seed points are converted into a 2D image.

For this purpose, we use the projection filter introduced and implemented in

our previous work [5]. Since the Hough line transformation depends on the

threshold given, there is a high chance that the same threshold will not provide

appropriate results for two different datasets. To resolve this potential issue,

the developed algorithm works as follows:

i. Set the threshold to a high number.

ii. Run the Hough transformation on the image.

iii. If the Hough transformation did not give at least two lines, lower the

threshold.

iv. Repeat steps ii. and iii. until at least two lines are found or the threshold

reaches zero.

When the Hough transformation was executed successfully, we now convert

the 2D image back to 3D.

(c) Rail pairs can be recognized through their matching direction and their pre-

defined distance from each other, called the track gauge. Let d1 and d2 be the

91

4. Recognition of railroad infrastructure in MLS point clouds

direction vectors of the lines calculated from the start and end points given by

the Hough transform, and the following criteria can be constructed:

∠d⃗1d⃗2 ≤ 5◦ (4.1)

|DistanceBetweenLines − Gauge| ≤ 0.05m (4.2)

3. Growing the rail pairs throughout the rest of the data. An iterative algorithm was

implemented that fully grows its pair of input rails. Each point has to meet two

criteria to become a candidate rail point. These are the following:

|Hrail − Hp| ≤ 0.05m (4.3)

∠v⃗raildirectionv⃗p ≤ 5◦ (4.4)

Hrail depicts the average height of the current segment that we grow, Hp is the

height of the point, vraildirection is the direction vector of the rail and vp is the vector

connecting the point to the current rail segment. To grow a rail segment, first we

calculate the local neighbourhood Np for each p point with the radius being our

growth size, then we recognize the candidate rail seed points from Np.

The flowchart in Figure 4.7 depicts the main steps of the algorithm.

Remark (Detecting railroad switches). The presented rail detection algorithm uses the

region growing method after recognizing an initial section of the rail pair. The parameter-

izable condition for the expansion is the length of the segment used in the expansion,

the maximum threshold for the vertical difference and the maximum threshold for the

rotation with respect to the direction vector of the previous segment. By selecting the

parameters more strictly, the railroad switches are excluded from the track detection.

By choosing the values for these parameters more permissively, the switches can be

recognized, but this also increases the chance of false detections. Incorporating additional

metrics beyond the distance and direction-based criteria, such as the normal change rate5

or the roughness6 [152], can enhance the analysis for easier detection of the switches.

5Normal change rate denotes the rate of change of a surface and is calculated for a point from the variation
of the normal vectors in its surroundings.

6The roughness value of a point is defined as the Euclidean distance from the least-squares fitted plane
of its local neighborhood.

92

4. Recognition of railroad infrastructure in MLS point clouds

Figure 4.7: Flowchart of the developed rail recognition algorithm

93

4. Recognition of railroad infrastructure in MLS point clouds

4.4 Results of infrastructure recognition

4.4.1 Fragmentation results

A curved rail track segment was selected from both sample datasets described

in Section 4.2 to evaluate the railroad fragmentation. These test areas are shown in

Figure 4.8.

(a) Area from Dataset 1, ca. 600 m, 51.8 ∗ 106 points

(b) Area from Dataset 2, ca. 1500 m, 58.6 ∗ 106 points

Figure 4.8: Selected curved segments to test the fragmentation process

The value of the maximum allowed path curve was 10◦, with this value the imple-

mented methods in the framework worked properly. The execution time of each method

for a given sample data can be found in Table 4.1.

The computed splitting locations of the methods are visualized in Figure 4.9. Each

method is marked with a different color as denoted in the caption. Additionally, manually

determined locations of the maximum trajectory of 10◦ were also marked to assess the

94

4. Recognition of railroad infrastructure in MLS point clouds

Method Dataset 1 area Dataset 2 area

Contour finding 2 m 52 s 9 m 10 s
Hough transformation 2 m 36 s 8 m 59 s
Generalized Hough transformation 3 m 11 s 13 m 7 s

Table 4.1: Runtime results of various curve detection methods for rail fragmentation

accuracy of the methods. In both cases, the Hough transformation produced the best

splitting locations (closest to the manually determined locations).

(a) Detection result for Dataset 1

(b) Detection result for Dataset 2

Figure 4.9: Curve detection result. Blue: contour finding, Green: Hough transformation,
Red: Generalized Hough transformation, Black: manual.

4.4.2 Object recognition results and verification

To evaluate and also verify the result and the accuracy of the object recognition al-

gorithms, we manually annotated the cables and the rails for a 100m long segment con-

sisting of 7,316,298 points from Dataset 1 and tested the algorithms on it. This railroad

segment is shown in Figure 4.10. The following metrics were examined: i) the runtime

(without parallel execution), ii) the number of remaining points, iii) the number of false

95

4. Recognition of railroad infrastructure in MLS point clouds

negatives, and iv) the number of false positive detections7. The results are shown in

Table 4.2.

Figure 4.10: Verification area for cable and rail object recognition

Among the cable detection algorithms, the region growing produced the best accuracy,

however it had the benefit of receiving a small seed of the cable as an additional input, as

discussed in Section 4.3.2. The 2D Hough transform algorithm for cable detection and the

rail recognition method also produced a fairly good accuracy. The execution times for all

evaluated methods are outstanding, since other novel approaches like [16] required over

5 minutes to process a 100m railroad segment even with concurrency. Unfortunately, con-

crete source code implementations and tested datasets are rarely made publicly available

in the related literature, hindering the opportunity of a more precise comparison of re-

sults.

Algorithm Object Runtime
Remaining
points

False
Negative

False
Positive

Hough 2D cable 3.11 s 23,397 7.77 % 2.24%
Hough 3D cable 2.38 s 38,291 0% 35.23 %
Region growing cable 0.16 s 24,121 3.06 % 0.33 %

Rail track rails 67.18 s 67,368 3.16 % 1.52 %

Table 4.2: Accuracy of the object recognition algorithms

7The percentage of false negative detections were calculated against the size of the verification point
cloud, while the percentage of false positive detections were calculated against the number of remaining
points.

96

4. Recognition of railroad infrastructure in MLS point clouds

Figure 4.11 shows the combined visual output of the best cable (red) and rail track

(orange) detection result on the sample segment.

Figure 4.11: Combined visual result of the cable and rail track detection

4.5 Fault analysis of railroad infrastructure

With the assistance of the experts of the Hungarian State Railways, some typical rail-

road infrastructure issues related to the cables and the rails have been identified that

require regular monitoring for safety reasons:

• the improper height of overhead contact cable;

• the improper horizontal deviation of the cables;

• the dangerously close vegetation to passing trains or the cables;

• the deformation of the railway bedding;

• the sinking of the railway ties.

These deviations often develop gradually over time and after a point they cause a se-

curity risk. This section demonstrates how the automatic recognition of the basic railway

infrastructure can aid the automated detection of such faults and anomalies.

4.5.1 Structure gauge collision analysis

Structure gauge, also called clearance outline, is a diagram or physical structure that

establishes limits for rail vehicles and their possible load, so that collisions with infras-

tructure (bridges, tunnels, platforms, masts, etc.) and natural objects (rocks, vegetation,

97

4. Recognition of railroad infrastructure in MLS point clouds

etc.) are avoided. It is the responsibility of the railroad line operator to keep the structure

gauge clear so that rail vehicles whose dimensions do not exceed these standards can be

moved safely and without damage.

There are various standards for structure gauges; and national and international reg-

ulations may also differ. Trains leaving or entering a country must comply with the in-

ternational gauge, but different regulations can apply to domestic passenger and freight

traffic. Figure 4.12 shows the structure gauge profiles used in Hungary.

Figure 4.12: The international G1 and the domestic G2 structure gauges in Hungary

Remark. For safety reasons, the clearance profile in space is greater than the structure

gauge. In addition, curved track sections have a larger structural gauge and clearance

because turning vehicles usually require more space.

The points that fall within the clearance gauge can be easily identified using a two-

dimensional structure gauge polygon placed on the axis of the rails, as depicted in

Figure 4.13. The polygonal shape of the clearance profile can be defined in a vector format

that complies with the national or international regulations that we want to validate.

During the evaluation on Dataset 1, an almost continuous line was observed on both

sides at a height of 1.5 metres (see Figure 4.14), which can be easily determined as the

noise caused by an object that was constantly in the field of view during the LiDAR

measurements. Additional points could also be observed that appear to be noise points

due to refraction, as they are outliers that have no neighbouring points near them. These

could be removed by outlier filtering before validating the clearance profile.

98

4. Recognition of railroad infrastructure in MLS point clouds

Figure 4.13: Structure gauge clearance polygon

Figure 4.14: Structure gauge validation result.
Hit points within the structure gauge are marked in red.

99

4. Recognition of railroad infrastructure in MLS point clouds

4.5.2 Contact cable stagger analysis

In Hungary, the contact cable is usually located at a height of 6 meters above the rail

level. A special feature of this cable is its stagger. This is necessary to prevent the cable

from "carving" a groove in the pantographs. This is shown in Figure 4.15. This stagger is

±400mm for installations before 1995, and ±300mm for newer installations. The allowed

discrepancy from these values is ±10mm for European international corridors (Category

I.) and ±30mm for less important rail lines (Category II.).

Figure 4.15: Stagger of the contact wire viewed from the top8

For contact cable stagger checking, the already detected cables and additionally the

already detected rail tracks are used. Figure 4.16 shows the outline of this pipeline.

Figure 4.16: Stagger checking pipeline

First, the contact cable must be filtered from the other cables. This is done by remov-

ing all points that are 0.18 meters or more above the lowest point of the cable input cloud.
8Figure adapted from Rónai [153].

100

4. Recognition of railroad infrastructure in MLS point clouds

After this step, the RANSAC algorithm is used to fit multiple straight lines to the hori-

zontally staggering contact cable, eliminating potential noise such as misdetected cable

points belonging to cantilevers or droppers. The result of these steps is demonstrated in

Figure 4.17 at a sample of Dataset 1.

Figure 4.17: Stagger checking result. The marked contact cable points are shown in red.

The stagger of the contact cable is checked with respect to the centerline of the rails. To

facilitate this, both the contact cable and the rails are rotated parallel to the Y-axis using

PCA. In this way, the centerline can be computed much more easily by calculating the

mean of the minimum and maximum X coordinates of the rail points.

Next, calculate the distance di ∈ R of each point from the centerline on the X-axis, i

being the index of the point. Let st ∈ R+ be the prescribed stagger value and th ∈ R+ the

allowed threshold for the staggering. Based on distance di:

• st − th ≤ di ≤ st + th: the point is marked with correct stagger on side A of the rail.

• −(st + th) ≤ di ≤ −(st − th): the point is marked with correct stagger on side B of

the rail.

• di > st + th ∨ di < −(st + th): point is saved as an excessively staggering point.

As mentioned above, the prescribed stagger and threshold values differ depending on

the year of construction and category of the railway line. Therefore, these values can be

set as parameters of the algorithm pipeline. After iterating over all contact cable points,

successive sections of correctly staggering point should alternate on side A and B of the

rails; otherwise a warning is issued indicating a potential lack of stagger. In addition, the

excessively staggering points – if any – are stored as the output of the pipeline.

101

4. Recognition of railroad infrastructure in MLS point clouds

4.5.3 Railway bedding error analysis

A typical anomaly for the railway bedding is that the crushed stone used as railway

ballast is elevated on one or both sides of the rails, as shown in Figure 4.18a. This is

usually an indication that the railway ties are sinking, a problem that should be corrected

by the railway maintenance company. Another related problem is the presence of (too

much) vegetation on the railway bedding, as seen in Figure 4.18b.

(a) Deformed, raised railway bedding on
both sides of the rails

(b) Dense vegetation over the railway
ballast on both sides of the rails

Figure 4.18: Examples of anomalies of the railway bedding detectable by remote sensing

Such a detected height deformation of the railway bedding is shown in Figure 4.19.

The anomaly is recognized by comparing the height of the rails with their immediate

surroundings.

(a) Raw LiDAR point cloud of deformed
railway bedding

(b) Detected railway bedding deformation
with red color

Figure 4.19: Result of railway bedding deformation analysis

4.6 Implementation

We have developed a framework capable of constructing algorithm pipes to apply

our filters to the point cloud one by one, obtaining more precise results step by step.

102

4. Recognition of railroad infrastructure in MLS point clouds

The framework also manages the loading and saving of the point clouds or projections

after each step, which helped to observe the internal states of the combined executions.

For performance reasons and the availability of the rich open-source spatial and image

processing libraries, the implementation was done in standard C++. The solution de-

pends on the open-source spatial libraries Point Cloud Library (PCL), OpenCV, LASlib

and LASzip. The source code is publicly available on GitHub9, and released under the

BSD-3 license. The project has been tested to build and run on Ubuntu Linux 20.04 LTS

and 22.04 LTS.

4.7 Conclusions

Both MMS and low-altitude ALS point clouds of the railroad infrastructure are typi-

cally dense, and therefore large point clouds, to guarantee that enough points are located

on the important objects (e.g. cables) to recognize them. Therefore, the automatic surveil-

lance and monitoring of railroad infrastructure requires not only reliable, but also com-

putationally efficient algorithms. In my research, I have developed a software framework

capable of detecting the most important railroad infrastructure, cables and rails in a large

input file through a series of 4 processing steps. First, the trajectory of the rail tracks is de-

tected, and the input point cloud is fragmented into parts containing a straight segment

of the rail track. By dividing the original input file into multiple fragments, this step al-

ready provides a high-level parallelization for future steps. After the fragmentation, the

cable and rail recognition steps are performed, which could also be parallelized with

each other. This is required, as even the used sample LiDAR dataset (provided by the

Hungarian State Railways) consists of over 20 kilometers of rural railway area and over

2 billion data points. The final processing step involves fault analysis and identification

algorithms for the railway infrastructure. For this purpose, some options for overhead ca-

ble staggering, track bed deformation, and the structure gauge analysis were presented.

The study considered multiple algorithms for these steps and carried out a comparative

examination of their runtime and accuracy.

Thesis 3. I have presented a novel automated data-driven method for railroad cable and railtrack

recognition in rural areas based on LiDAR point clouds. As part of the research, a robust frag-

mentation method was also designed to create successive straight sections of rail tracks, which

facilitates and simplifies further detection in the point cloud, as it can already be assumed that the

given section of track is straight during processing. In addition, fragmentation of the point cloud

also provides an opportunity for high-level parallelization. The thesis proves that verification and

9https://github.com/GISLab-ELTE/railroad

103

https://github.com/GISLab-ELTE/railroad
https://github.com/GISLab-ELTE/railroad

4. Recognition of railroad infrastructure in MLS point clouds

deformation analysis of the railroad infrastructure is feasible through an automated algorithm

pipeline, supporting or replacing manual investigations. As proof of a concept, an implementation

was delivered and made publicly available.

Work is currently underway with several master students to implement various other

detectors to support further and more comprehensive fault analysis of the railway infras-

tructure. Future research may also consider including other available attributes of the

points besides their position, such as laser pulse return intensity or RGB data.

104

Chapter 5

Summary

The dissertation studies the storage efficient management of multitemporal massive

vector spatial datasets, while also preserving the semantic information of the editing op-

erations performed between revisions. I present novel solutions for object recognition

of buildings, infrastructure, and vegetation, and for detecting their changes in ALS and

MLS point clouds.

In Chapter 2, I introduced a solution for the efficient management of geospatial data

using operation-based revision control. The specified methodology supports both the

centralized and the distributed version management models, as well as branching and

merge conflict resolution.

In Chapter 3, I proposed a methodology to automatically evaluate altimetry change

detection of massive multitemporal datasets and create a robust algorithm for segment-

ing buildings and trees. The multi epoch nation-wide Dutch altimetry archives were se-

lected for demonstration as example measurements, targeting especially large urban and

suburban areas, but the approach is generally applicable to any kind of area.

In Chapter 4, I developed a novel automated data-driven method for fragmenting

railway point clouds into straight sections and segmenting railroad infrastructure such

as rails and cables. This is followed by showcasing real-life examples on automated

fault recognition in the infrastructure. MLS point clouds acquired from Hungarian State

Railways were used for testing and validation.

All theses and the results presented were backed by an implementation for repro-

ducibility, either as part of a larger and more mature software library, or a new library

and tool was created as a prototype implementation. In all cases, the source code was

made publicly available and licensed.

105

5. Summary

5.1 Results

Thesis 1 (Revision management of vector data models). I have presented the methodol-

ogy for the efficient management of geospatial data using operation-based revision control, while

persisting the semantic information of the changesets. Beside the theoretical model, a prototype

implementation was also provided part of the AEGIS geospatial framework, a generic library for

geographic and remote sensing data processing.

Related publication: [4]

Thesis 2 (Change analysis of buildings and vegetation). I propose a methodology to automat-

ically evaluate altimetry change detection of massive multitemporal datasets and create a robust

algorithm for building and tree segmentation, targeting especially large urban and suburban areas,

but applicable generally to any kind of area. As example measurements, the multi-epoch nation-

wide Dutch altimetry archives were selected for demonstration, as these contain data points on

the magnitude of trillions, resulting in several terabytes of data. The software library developed to

validate the thesis was made publicly available.

Related publications: [1, 2]

Thesis 3 (Fault analysis of railroad infrastructure). I have presented a novel automated data-

driven method for railroad cable and railtrack recognition in rural areas based on LiDAR point

clouds. As part of the research, a robust fragmentation method was also designed to create succes-

sive straight sections of rail tracks, which facilitates and simplifies further detection in the point

cloud, as it can already be assumed that the given section of track is straight during processing. In

addition, fragmentation of the point cloud also provides an opportunity for high-level paralleliza-

tion. The thesis proves that verification and deformation analysis of the railroad infrastructure is

feasible through an automated algorithm pipeline, supporting or replacing manual investigations.

As proof of a concept, an implementation was delivered and made publicly available.

Related publications: [5, 3]

106

Összefoglaló

A doktori értekezésem a nagy méretű multitemporális vektoros téradatok

hatékony tárolását tanulmányozza, a szerkesztési műveletek szemantikus információi-

nak megőrzése mellett. Az értkezésben új megoldásokat mutatok be az épített környezet

(épületek és egyéb infrastruktúra) és a vegetáció objektumfelismerésére, valamint azok

változásainak észlelésére légi és mobil földi lézerszkenneléssel gyűjtött pontfelhőkben.

A 2. fejezetben bemutattam a megoldásom a téradatok művelet alapú verz-

iókezelésével megvalósított hatékony kezelésére – különös tekintettel a tárterület igényre

és a szemantikus információk megőrzésére. A specifikált módszer támogatja mind a cen-

tralizált, mind az elosztott verziókezelési modelleket, valamint az ágak létrehozását, és

összevonásukkor az ütközések (konfliktusok) feloldását.

A 3. fejezetben egy új módszert javasoltam a nagy méretű multitemporális adathal-

mazok magassági változásának automatizált kiértékelésére, továbbá egy robusztus al-

goritmus létrehozására az épített környezet és a fák szegmentálásához. Demonstrációs

célból a több mérési időpontban is rendelkezésre álló, légi pásztázással készült, orszá-

gos lefedettségű holland nemzeti AHN pontfelhők kerültek kiválasztásra példaként,

különösen nagyvárosi és külvárosi területekre fókuszálva, de a módszer általánosan al-

kalmazható bármilyen területen.

A 4 fejezetben egy új, automatizált, adatvezérelt módszert fejlesztettem ki a vasúti

környezetről készült pontfelhők egyenes szakaszokra történő feldarabolására, majd azt

követően a vasúti infrastruktúra, például sínek és a felsővezeték kábelek szegmen-

tálására. A kutatás folytatásaként a vasúti infrastruktúra hibaelemzésére összpontosít az

értekezés, ebből a célból bemutatásra került több algoritmus az űrszelvény ütközésvizs-

gálatnak, a felsővezeték kábel kígyózásának és a zúzottkő ágyazat felgyűrődésének el-

lenőrzésére. A teszteléshez és validáláshoz a Magyar Államvasutak (MÁV) által ren-

delkezésre bocsátott MLS pontfelhőket használtam.

Az értekezés valamennyi tézisét és a bemutatott eredményeket a reprodukálhatóság

érdekében implementáció támasztja alá, vagy egy már korábban létező nagyobb és ki-

forrottabb szoftverkönyvtár részeként, vagy egy új prototípus könyvtár formájában. A

programok minden esetben nyílt forráskódú projektként kerültek közzétételre.

107

Appendix A

Building change detection workflow

image collection

Figure 3.4: Satellite image of the TU Delft campus area with indicated study locations

108

A. Building change detection workflow image collection

Figure 3.5: Unfiltered altimetry changes between AHN-2 and AHN-3 measurements

Figure 3.6: Areas potentially containing objects by comparing AHN DSM and DTM

Figure 3.7: DTM-DSM comparison based object extraction followed by noise filtering

109

A. Building change detection workflow image collection

Figure 3.8: Cluster filter applied to ignore modifications on an small scale

Figure 3.9: Final results produced through border reconstruction of buildings

110

Appendix B

Vegetation change detection

workflow image collection

Figure 3.13: Satellite image of the study area

111

B. Vegetation change detection workflow image collection

Figure 3.14: AHN-2 canopy height model

Figure 3.15: Low-pass filtering performed on AHN-2

112

B. Vegetation change detection workflow image collection

Figure 3.16: Elimination of low points performed on AHN-2

Figure 3.17: Gap filling interpolation performed on AHN-2

113

B. Vegetation change detection workflow image collection

Figure 3.19: Tree crown segmentation performed on AHN-2

Figure 3.20: Morphological opening performed on AHN-2

114

B. Vegetation change detection workflow image collection

Figure 3.21: Detected paired and unpaired clusters

115

Bibliography

Author’s Journal Papers

[1] Máté Cserép and Roderik Lindenbergh. “Distributed processing of Dutch AHN

laser altimetry changes of the built-up area”. In: International Journal of Applied

Earth Observation and Geoinformation 116 (2023), p. 103174.

[2] Anett Fekete and Mate Cserep. “Tree segmentation and change detection of large

urban areas based on airborne LiDAR”. In: Computers & Geosciences 156 (2021),

p. 104900. ISSN: 0098-3004. DOI: 10.1016/j.cageo.2021.104900.

[3] Máté Cserép et al. “Effective Railroad Fragmentation and Infrastructure

Recognition Based on Dense LIDAR Point Clouds”. In: ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (2022), pp. 103–

109.

Author’s Conference Papers

[4] Máté Cserép and Roberto Giachetta. “Operation-based revision control for

geospatial data sets”. In: Geomatics Workbooks 12 (2015), pp. 139–153. ISSN: 1591-

092x.

[5] Máté Cserép, Péter Hudoba, and Zoltán Vincellér. “Robust Railroad Cable

Detection in Rural Areas from MLS Point Clouds”. In: Free and Open Source

Software for Geospatial (FOSS4G) Conference Proceedings. Vol. 18. 2018, p. 8. DOI:

10.7275/z46z-xh51.

[6] Istvan Elek and Mate Cserep. “Processing Drone Images with the Open Source

Giwer Software Package”. In: Proceedings of the Future Technologies Conference (FTC)

2021, Volume 2. Springer. 2022, pp. 201–209.

116

https://doi.org/10.1016/j.cageo.2021.104900
https://doi.org/10.7275/z46z-xh51

BIBLIOGRAPHY

Other References

[7] Jing Wang, Ratan K. Ghosh, and Sajal K. Das. “A survey on sensor localization”.

In: Journal of Control Theory and Applications 8.1 (2010), pp. 2–11.

[8] Jixian Zhang. “Multi-source remote sensing data fusion: status and trends”. In:

International Journal of Image and Data Fusion 1.1 (2010), pp. 5–24.

[9] Chaowei Yang et al. “Geospatial cyberinfrastructure: past, present and future”. In:

Computers, Environment and Urban Systems 34.4 (2010), pp. 264–277.

[10] Nayan B. Ruparelia. “The history of version control”. In: ACM SIGSOFT Software

Engineering Notes 35.1 (2010), pp. 5–9.

[11] Mark E. Easterfield, Richard G. Newell, and David G. Theriault. “Version man-

agement in GIS-applications and techniques”. In: Proc. of the European Conference

on Geographical Information Systems (EGIS 1990), Amsterdam. 1990, pp. 1–8.

[12] Monica Wachowicz and Richard Healey. “Towards temporality in GIS”. In:

Innovations in GIS. CRC Press, 1994, pp. 118–129.

[13] Corné Van der Sande, Sylvie Soudarissanane, and Kourosh Khoshelham.

“Assessment of relative accuracy of AHN-2 laser scanning data using planar fea-

tures”. In: Sensors 10.9 (2010), pp. 8198–8214.

[14] Mostafa Arastounia. “Automated recognition of railroad infrastructure in rural

areas from LiDAR data”. In: Remote Sensing 7.11 (2015), pp. 14916–14938.

[15] Yoonseok Jwa and Gunho Sonh. “Kalman Filter Based Railway Tracking from

Mobile LiDAR Data”. In: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial

Information Sciences 2 (2015).

[16] Mostafa Arastounia. “An Enhanced Algorithm for Concurrent Recognition of Rail

Tracks and Power Cables from Terrestrial and Airborne LiDAR Point Clouds”. In:

Infrastructures 2.2 (2017), p. 8.

[17] I. László. “The integration of remote sensing and GIS data in the control of agri-

cultural subsidies in Hungary”. In: Proceedings of the 33rd Symposium of EARSeL.

2013, pp. 589–598.

[18] Tommi Mikkonen and Antti Nieminen. “Elements for a cloud-based development

environment: online collaboration, revision control, and continuous integration”.

In: Proceedings of the WICSA/ECSA 2012 Companion Volume. 2012, pp. 14–20.

[19] Berthold Firmenich et al. “Versioning structured object sets using text based

Version Control Systems”. In: Proceedings of the 22nd CIB-W78 (2005).

117

BIBLIOGRAPHY

[20] Jozef Doboš and Anthony Steed. “3D revision control framework”. In: Proceedings

of the 17th International Conference on 3D Web Technology. 2012, pp. 121–129.

[21] Richard G. Newell, David Theriault, and Mark Easterfield. “Temporal

GIS—modeling the evolution of spatial data in time”. In: Computers & Geosciences

18.4 (1992), pp. 427–433.

[22] Donna J. Peuquet and Niu Duan. “An event-based spatiotemporal data model

(ESTDM) for temporal analysis of geographical data”. In: International journal of

geographical information systems 9.1 (1995), pp. 7–24.

[23] Roberto Giachetta. “AEGIS-A state-of-the art component based spatio-temporal

framework for education and research”. In: Free and Open Source Software for

Geospatial (FOSS4G) Conference Proceedings. Vol. 13. 1. 2013, p. 10.

[24] Sven Apel et al. “Semistructured merge: rethinking merge in revision control sys-

tems”. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering. 2011, pp. 190–200.

[25] Haifeng Shen and Chengzheng Sun. “Operation-based revision control systems”.

In: Third International Workshop on Collaborative Editing Systems in conjunction with

ACM Conference on Supporting Grooup Work. 2001.

[26] Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. “Nonlinear revision control

for images”. In: ACM Transactions on Graphics (TOG) 30.4 (2011), pp. 1–10.

[27] Herring, J. R., ed. OpenGIS Implementation Standard for Geographic Information:

Simple Feature Access - Common Architecture. Tech. rep. version 1.2.1. Open

Geospatial Consortium, 2011. URL: http : / / www . opengeospatial . org /

standards/sfa.

[28] Paul Cooper. The OpenGIS Abstract Specification-Topic 2: Spatial referencing by coor-

dinates. Tech. rep. version 4.0. Open Geospatial Consortium, 2010.

[29] Bryan O’Sullivan. “Making sense of revision-control systems”. In: Communications

of the ACM 52.9 (2009), pp. 56–62.

[30] Jürgen Reuter et al. “Distributed Revision Control Via the World Wide Web”.

In: Software Configuration Management: ICSE’96 SCM-6 Workshop Berlin, Germany,

March 25–26, 1996 Selected Papers 6. Springer. 1996, pp. 166–174.

[31] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. “Big data and cloud com-

puting: current state and future opportunities”. In: Proceedings of the 14th interna-

tional conference on extending database technology. 2011, pp. 530–533.

118

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

BIBLIOGRAPHY

[32] Chaowei Yang et al. “Spatial cloud computing: how can the geospatial sciences

use and help shape cloud computing?” In: International Journal of Digital Earth 4.4

(2011), pp. 305–329.

[33] Milind Bhandarkar. “MapReduce programming with apache Hadoop”. In: 2010

IEEE International Symposium on Parallel & distributed processing (IPDPS). IEEE.

2010, pp. 1–1.

[34] Konstantin Shvachko et al. “The hadoop distributed file system”. In: 2010 IEEE

26th symposium on mass storage systems and technologies (MSST). Ieee. 2010, pp. 1–

10.

[35] Ariel Cary et al. “Experiences on processing spatial data with mapreduce”. In:

Scientific and Statistical Database Management: 21st International Conference, SSDBM

2009 New Orleans, LA, USA, June 2-4, 2009 Proceedings 21. Springer. 2009, pp. 302–

319.

[36] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. “Cumulus: Filesystem

backup to the cloud”. In: ACM Transactions on Storage (TOS) 5.4 (2009), pp. 1–28.

[37] Matei Zaharia et al. “Discretized Streams: An Efficient and Fault-Tolerant Model

for Stream Processing on Large Clusters.” In: HotCloud 12.10–10 (2012).

[38] Roberto Giachetta. “A framework for processing large scale geospatial and remote

sensing data in MapReduce environment”. In: Computers & graphics 49 (2015),

pp. 37–46.

[39] Martin Fowler. Inversion of control containers and the dependency injection pattern

(2004). 2004.

[40] Stephan Winter and Andrew U Frank. “Topology in raster and vector representa-

tion”. In: GeoInformatica 4 (2000), pp. 35–65.

[41] Roberto Giachetta. “Advancing a geospatial framework to the MapReduce

model”. In: Proceedings of the 1stI Qmulus workshop on processing large geospatial

data. 2014, pp. 45–52.

[42] Jacob Ziv and Abraham Lempel. “A universal algorithm for sequential data com-

pression”. In: IEEE Transactions on information theory 23.3 (1977), pp. 337–343.

[43] Scott Chacon and Ben Straub. Pro Git. Springer Nature, 2014.

[44] Jan Boehm. “File-centric organization of large LiDAR Point Clouds in a Big Data

context”. In: Workshop on processing large geospatial data Cardiff, UK. Vol. 8. 2014.

[45] Chaowei Yang and Qunying Huang. Spatial Cloud Computing: A Practical Approach.

Boca Raton, FL: CRC Press, 2013.

119

BIBLIOGRAPHY

[46] Vladimir Badenko et al. “Multithreading in Laser Scanning Data Processing”. In:

International Conference on Computational Science and Its Applications. Springer. 2019,

pp. 289–305.

[47] James W. Hegeman et al. “Distributed LiDAR data processing in a high-memory

cloud-computing environment”. In: Annals of GIS 20.4 (2014), pp. 255–264. DOI:

10.1080/19475683.2014.923046.

[48] X. Jian et al. “A Hadoop-based algorithm of generating DEM grid from point

cloud data”. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences XL-7/W3 (2015), pp. 1209–1214. DOI: 10.5194/

isprsarchives-XL-7-W3-1209-2015.

[49] Sören Discher et al. “Service-oriented processing and analysis of massive point

clouds in geoinformation management”. In: Service-oriented mapping. Springer,

2019, pp. 43–61.

[50] James A. McDivitt. Apollo 15 Mission Report. Tech. rep. Section: 5.12.2 Laser

Altimeter. NASA, Dec. 1971. URL: https://www.hq.nasa.gov/alsj/a15/ap15mr.

pdf.

[51] Wai Yeung Yan, Ahmed Shaker, and Nagwa El-Ashmawy. “Urban land cover clas-

sification using airborne LiDAR data: A review”. In: Remote Sensing of Environment

158 (2015), pp. 295–310.

[52] Donald Shepard. “A Two-dimensional Interpolation Function for Irregularly-

spaced Data”. In: Proceedings of the 1968 23rd ACM National Conference. ACM ’68.

New York, NY, USA: ACM, 1968, pp. 517–524. DOI: 10.1145/800186.810616.

[53] George Y. Lu and David W. Wong. “An adaptive inverse-distance weighting spa-

tial interpolation technique”. In: Computers & geosciences 34 (9).9 (2008), pp. 1044–

1055. DOI: 10.1016/j.cageo.2007.07.010.

[54] A. Bellakaout et al. “Automatic 3D Extraction of Buildings, Vegetation and Roads

from LIDAR Data”. In: International Archives of the Photogrammetry, Remote Sensing

& Spatial Information Sciences 41 (B3).B3 (2016), pp. 173–180. DOI: 10 . 5194 /

isprsarchives-XLI-B3-173-2016.

[55] A. S. Antonarakis, Keith S. Richards, and James Brasington. “Object-based land

cover classification using airborne LiDAR”. In: Remote Sensing of environment 112

(6).6 (2008), pp. 2988–2998. DOI: 10.1016/j.rse.2008.02.004.

[56] Jeong-Heon Song et al. “Assessing the possibility of land-cover classification us-

ing lidar intensity data”. In: International archives of photogrammetry remote sensing

and spatial information sciences 34 (3/B).3/B (2002), pp. 259–262.

120

https://doi.org/10.1080/19475683.2014.923046
https://doi.org/10.5194/isprsarchives-XL-7-W3-1209-2015
https://doi.org/10.5194/isprsarchives-XL-7-W3-1209-2015
https://www.hq.nasa.gov/alsj/a15/ap15mr.pdf
https://www.hq.nasa.gov/alsj/a15/ap15mr.pdf
https://doi.org/10.1145/800186.810616
https://doi.org/10.1016/j.cageo.2007.07.010
https://doi.org/10.5194/isprsarchives-XLI-B3-173-2016
https://doi.org/10.5194/isprsarchives-XLI-B3-173-2016
https://doi.org/10.1016/j.rse.2008.02.004

BIBLIOGRAPHY

[57] Hamid Hamraz, Marco A. Contreras, and Jun Zhang. “A scalable approach for

tree segmentation within small-footprint airborne LiDAR data”. In: Computers &

Geosciences 102 (2017), pp. 139–147.

[58] Juan C Suárez et al. “Use of airborne LiDAR and aerial photography in the esti-

mation of individual tree heights in forestry”. In: Computers & Geosciences 31 (2).2

(2005), pp. 253–262.

[59] Ahmed Shaker, Wai Yeung Yan, and Paul E. LaRocque. “Automatic land-water

classification using multispectral airborne LiDAR data for near-shore and river

environments”. In: ISPRS Journal of Photogrammetry and Remote Sensing 152 (2019),

pp. 94–108. DOI: 10.1016/j.isprsjprs.2019.04.005.

[60] Ying Sun et al. “Deep Learning Approaches for the Mapping of Tree Species

Diversity in a Tropical Wetland Using Airborne LiDAR and High-Spatial-

Resolution Remote Sensing Images”. In: Forests 10 (11).11 (2019), p. 1047. DOI:

10.3390/f10111047.

[61] Li Sun, Yuqi Tang, and Liangpei Zhang. “Rural building detection in high-

resolution imagery based on a two-stage CNN model”. In: IEEE Geoscience and

Remote Sensing Letters 14.11 (2017), pp. 1998–2002.

[62] Shunping Ji et al. “Building instance change detection from large-scale aerial im-

ages using convolutional neural networks and simulated samples”. In: Remote

Sensing 11.11 (2019), p. 1343.

[63] F. Politz and M. Sester. “Building change detection in airborne laser scanning

and dense image matching point clouds using a residual neural network”. In: The

International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences XLIII-B2-2022 (2022), pp. 625–632. DOI: 10.5194/isprs-archives-XLIII-

B2-2022-625-2022.

[64] Ivan Tomljenovic et al. “Building extraction from airborne laser scanning data: An

analysis of the state of the art”. In: Remote Sensing 7.4 (2015), pp. 3826–3862.

[65] Uwe Weidner. “Digital Surface Models for Building Extraction”. In: Automatic

Extraction of Man-Made Objects from Aerial and Space Images (II). Ed. by Armin

Gruen, Emmanuel P. Baltsavias, and Olof Henricsson. Basel: Birkhäuser Basel,

1997, pp. 193–202. ISBN: 978-3-0348-8906-3. DOI: 10.1007/978- 3- 0348- 8906-

3_19.

[66] G. Priestnall, J. Jaafar, and A. Duncan. “Extracting urban features from LiDAR

digital surface models”. In: Computers, Environment and Urban Systems 24.2 (2000),

pp. 65–78.

121

https://doi.org/10.1016/j.isprsjprs.2019.04.005
https://doi.org/10.3390/f10111047
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-625-2022
https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-625-2022
https://doi.org/10.1007/978-3-0348-8906-3_19
https://doi.org/10.1007/978-3-0348-8906-3_19

BIBLIOGRAPHY

[67] Zheng Wang and Tony Schenk. “Building extraction and reconstruction from li-

dar data”. In: International Archives of Photogrammetry and Remote Sensing 33.B3/2;

PART 3 (2000), pp. 958–964.

[68] Balázs Dukai, Hugo Ledoux, and J. Stoter. “A multi-height LoD1 model of all

buildings in the Netherlands”. In: ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences 4.4/W8 (2019), pp. 51–57.

[69] Ravi Peters et al. Automated 3D reconstruction of LoD2 and LoD1 models for all 10

million buildings of the Netherlands. English. 2022. DOI: 10.14358/PERS.21-00032R2.

[70] Camilo León-Sánchez et al. “Testing the new 3D bag dataset for energy

demand estimation of residential buildings”. In: International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences 46.4/W1-2021

(2021).

[71] Harri Kaartinen et al. “An international comparison of individual tree detection

and extraction using airborne laser scanning”. In: Remote Sensing 4 (4).4 (2012),

pp. 950–974.

[72] Lothar Eysn et al. “A benchmark of lidar-based single tree detection methods us-

ing heterogeneous forest data from the alpine space”. In: Forests 6 (5).5 (2015),

pp. 1721–1747.

[73] Jean-Matthieu Monnet et al. “Tree top detection using local maxima filtering:

a parameter sensitivity analysis”. In: 10th International Conference on LiDAR

Applications for Assessing Forest Ecosystems (Silvilaser 2010). 2010, p. 9.

[74] Lothar Eysn et al. “Forest delineation based on airborne LIDAR data”. In: Remote

Sensing 4 (3).3 (2012), pp. 762–783.

[75] Michele Dalponte, Lorenzo Frizzera, and Damiano Gianelle. “Estimation of for-

est attributes at single tree level using hyperspectral and ALS data”. In: 2014

ForestSAT conference. 2014.

[76] Marco Sambugaro et al. “Utilizzo Del Telerilevamento Per l’Analisi Della

Biodiversità Strutturale: Il Caso Studio Della Riserva Forestale di Clöise (Asiago,

VI)”. In: Proceedings of the 17th Conferenza Nazionale ASITA, Riva del Garda, Italy.

2013, pp. 5–7.

[77] Eva Lindberg et al. “Delineation of tree crowns and tree species classification from

full-waveform airborne laser scanning data using 3-D ellipsoidal clustering”. In:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7

(7).7 (2014), pp. 3174–3181.

122

https://doi.org/10.14358/PERS.21-00032R2

BIBLIOGRAPHY

[78] Juntao Yang et al. “An individual tree segmentation method based on water-

shed algorithm and three-dimensional spatial distribution analysis from air-

borne LiDAR point clouds”. In: IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing 13 (2020), pp. 1055–1067.

[79] Wenkai Li et al. “A new method for segmenting individual trees from the lidar

point cloud”. In: Photogrammetric Engineering & Remote Sensing 78 (1).1 (2012),

pp. 75–84.

[80] Josef Reitberger et al. “3D segmentation of single trees exploiting full waveform

LIDAR data”. In: ISPRS Journal of Photogrammetry and Remote Sensing 64 (6).6

(2009), pp. 561–574.

[81] Marek K Jakubowski et al. “Delineating individual trees from LiDAR data: A com-

parison of vector-and raster-based segmentation approaches”. In: Remote Sensing

5 (9).9 (2013), pp. 4163–4186.

[82] George Vosselman and Hans-Gerd Maas, eds. Airborne and terrestrial laser scanning.

United Kingdom: CRC Press, 2010. ISBN: 978-1904445-87-6.

[83] R. C. dos Santos et al. “Automatic building change detection using multi-temporal

airborne lidar data”. In: (2020), pp. 54–59. DOI: 10.1109/LAGIRS48042.2020.

9165628.

[84] Thomas Butkiewicz et al. “Visual analysis and semantic exploration of urban

LiDAR change detection”. In: Computer Graphics Forum. Vol. 27. 3. Wiley Online

Library. 2008, pp. 903–910.

[85] Roderik Lindenbergh and Peter Pietrzyk. “Change detection and deformation

analysis using static and mobile laser scanning”. In: Applied Geomatics 7 (2).2

(2015), pp. 65–74. DOI: 10.1007/s12518-014-0151-y.

[86] M. Xie, K. Fu, and Y. Wu. “Building Recognition and Reconstruction from Aerial

Imagery and LIDAR Data”. In: 2006 CIE International Conference on Radar. IEEE.

Oct. 2006, pp. 1–4. DOI: 10.1109/ICR.2006.343296.

[87] Shouji Du et al. “Building change detection using old aerial images and new

LiDAR data”. In: Remote Sensing 8.12 (2016), p. 1030.

[88] Tuong Thuy Vu, M. Matsuoka, and F. Yamazaki. “LIDAR-based change detection

of buildings in dense urban areas”. In: Geoscience and Remote Sensing Symposium,

2004. IGARSS ’04. Proceedings. 2004 IEEE International. Vol. 5. Sept. 2004, pp. 3413–

3416.

123

https://doi.org/10.1109/LAGIRS48042.2020.9165628
https://doi.org/10.1109/LAGIRS48042.2020.9165628
https://doi.org/10.1007/s12518-014-0151-y
https://doi.org/10.1109/ICR.2006.343296

BIBLIOGRAPHY

[89] T. Vögtle and E. Steinle. “Detection and recognition of changes in building ge-

ometry derived from multitemporal laserscanning data”. In: International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences 35.B2 (2004),

pp. 428–433.

[90] K. Zhou et al. “LiDAR-guided dense matching for detecting changes and updat-

ing of buildings in Airborne LiDAR data”. In: ISPRS Journal of Photogrammetry and

Remote Sensing 162 (2020), pp. 200–213.

[91] AL Van Natijne, RC Lindenbergh, and RF Hanssen. “Massive linking of PS-InSAR

deformations to a national airborne laser point cloud”. In: Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci 42.2 (2018), pp. 1137–1144.

[92] Rico Richter, Jan Eric Kyprianidis, and Jürgen Döllner. “Out-of-Core GPU-based

Change Detection in Massive 3 D Point Clouds”. In: Transactions in GIS 17.5 (2013),

pp. 724–741.

[93] Leena Matikainen et al. “Automatic detection of buildings and changes in build-

ings for updating of maps”. In: Remote Sensing 2.5 (2010), pp. 1217–1248.

[94] Chelsea P Scott et al. “The M7 2016 Kumamoto, Japan, earthquake: 3-D defor-

mation along the fault and within the damage zone constrained from differen-

tial lidar topography”. In: Journal of Geophysical Research: Solid Earth 123.7 (2018),

pp. 6138–6155.

[95] Florian Politz, Monika Sester, and Claus Brenner. “Building Change Detection of

Airborne Laser Scanning and Dense Image Matching Point Clouds using Height

and Class Information”. In: AGILE: GIScience Series 2 (2021), pp. 1–14.

[96] Jack G Williams et al. “Multi-directional change detection between point clouds”.

In: ISPRS Journal of Photogrammetry and Remote Sensing 172 (2021), pp. 95–113.

[97] Xiaowei Yu et al. “Change detection techniques for canopy height growth mea-

surements using airborne laser scanner data”. In: Photogrammetric Engineering &

Remote Sensing 72 (12).12 (2006), pp. 1339–1348. DOI: 10.14358/PERS.72.12.1339.

[98] V. Meyer et al. “Detecting tropical forest biomass dynamics from repeated air-

borne lidar measurements”. In: Biogeosciences 10 (8).8 (2013), pp. 5421–5438. DOI:

10.5194/bg-10-5421-2013.

[99] Sanna Kaasalainen et al. “Change detection of tree biomass with terrestrial laser

scanning and quantitative structure modelling”. In: Remote Sensing 6 (5).5 (2014),

pp. 3906–3922. DOI: 10.3390/rs6053906.

124

https://doi.org/10.14358/PERS.72.12.1339
https://doi.org/10.5194/bg-10-5421-2013
https://doi.org/10.3390/rs6053906

BIBLIOGRAPHY

[100] Pasi Raumonen et al. “Fast automatic precision tree models from terrestrial laser

scanner data”. In: Remote Sensing 5 (2).2 (2013), pp. 491–520. DOI: 10 . 3390 /

rs5020491.

[101] L. Swart. “How the Up-to-date Height Model of the Netherlands (AHN) became

a massive point data cloud”. In: NCG KNAW 17 (2010).

[102] PDOK. Kwaliteitsdocument AHN2. Tech. rep. 1.3 final. Dutch National Spatial Data

Infrastructure, May 2013. URL: http://www.ahn.nl/.

[103] PDOK. Besteksvoorwaarden inwinning landsdekkende dataset AHN2014-2019. Tech.

rep. 2.0 final. Dutch National Spatial Data Infrastructure, May 2015. URL: http:

//www.ahn.nl/.

[104] Michael John De Smith, Michael F. Goodchild, and Paul Longley. Geospatial

Analysis: A comprehensive guide to principles, techniques and software tools. 5th.

Troubador Publishing Ltd, 2015.

[105] Peter van Oosterom et al. “Massive point cloud data management: Design, imple-

mentation and execution of a point cloud benchmark”. In: Computers & Graphics

49 (2015), pp. 92–125. ISSN: 0097-8493.

[106] Ruijin Ma. “DEM Generation and Building Detection from Lidar Data”. In:

Photogrammetric Engineering & Remote Sensing 71.7 (2005), pp. 847–854. ISSN: 0099-

1112. DOI: 10.14358/PERS.71.7.847.

[107] Norbert Haala and Claus Brenner. “Extraction of Buildings and Trees in Urban

Environments”. In: ISPRS Journal of Photogrammetry and Remote Sensing 54 (1999),

pp. 130–137.

[108] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. 3rd. Prentice

Hall Press, 2008. ISBN: 978-0131687288.

[109] Jian Guo Liu and Philippa J Mason. Essential Image Processing and GIS for Remote

Sensing. John Wiley & Sons, 2013. ISBN: 978-0-470-51031-5.

[110] J. Hyyppä et al. “Review of methods of small-footprint airborne laser scanning

for extracting forest inventory data in boreal forests”. In: International Journal of

Remote Sensing 29 (5).5 (2008), pp. 1339–1366.

[111] Juha Hyyppä et al. “A segmentation-based method to retrieve stem volume

estimates from 3-D tree height models produced by laser scanners”. In: IEEE

Transactions on geoscience and remote sensing 39 (5).5 (2001), pp. 969–975. DOI: 10.

1109/36.921414.

125

https://doi.org/10.3390/rs5020491
https://doi.org/10.3390/rs5020491
http://www.ahn.nl/
http://www.ahn.nl/
http://www.ahn.nl/
https://doi.org/10.14358/PERS.71.7.847
https://doi.org/10.1109/36.921414
https://doi.org/10.1109/36.921414

BIBLIOGRAPHY

[112] Charlotte M. Gurney, John R. G. Townshend, et al. “The use of contextual informa-

tion in the classification of remotely sensed data”. In: Photogrammetric Engineering

and Remote Sensing 49 (1).1 (1983), pp. 55–64.

[113] Qi Chen et al. “Isolating individual trees in a savanna woodland using small foot-

print lidar data”. In: Photogrammetric Engineering & Remote Sensing 72 (8).8 (2006),

pp. 923–932. DOI: 10.14358/PERS.72.8.923.

[114] Rafael C. Gonzalez and Richard E. Woods. “Morphological Image Processing”. In:

Digital Image Processing (3rd Edition). Upper Saddle River, NJ, USA: Prentice-Hall,

Inc., 2006. Chap. 9, pp. 649–710. ISBN: 013168728X.

[115] Nick Efford. “Morphological image processing”. In: Digital Image Processing: A

Practical Introduction Using Java. 1st. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 2000. Chap. 11, pp. 271–297. ISBN: 0201596237.

[116] R. Tyrrell Rockafellar and Roger J. B. Wets. “Set convergence”. In: Variational anal-

ysis. Vol. 317. Springer Science & Business Media, 2009. Chap. 4, pp. 108–147. ISBN:

978-3-540-62772-2. DOI: 10.1007/978-3-642-02431-3.

[117] Abdel Aziz Taha and Allan Hanbury. “An efficient algorithm for calculating the

exact Hausdorff distance”. In: IEEE transactions on pattern analysis and machine in-

telligence 37 (11).11 (2015), pp. 2153–2163.

[118] Dejun Zhang et al. “An efficient approach to directly compute the exact Hausdorff

distance for 3D point sets”. In: Integrated Computer-Aided Engineering 24 (3).3

(2017), pp. 261–277.

[119] Máté Cserép and Roderik Lindenbergh. Detected changes of the built-up area com-

paring the Dutch AHN 2-3 datasets. Mendeley Data. Nov. 2022. DOI: 10.17632/

yrxvhfj5jv.1.

[120] Ke Liu et al. “Strip adjustment of airborne LiDAR data in urban scenes using

planar features by the minimum Hausdorff distance”. In: Sensors 19 (23).23 (2019),

p. 5131.

[121] Anett Fekete and Máté Cserép. Tree Segmentation and Change Detection of Large

Urban Areas Based on Airborne LiDAR: Datasets and Supplementary Materials.

Mendeley Data. V2. June 2021. DOI: 10.17632/9thyzzwd5d.2.

[122] Juho-Pekka Virtanen et al. “Nationwide point cloud—the future topographic core

data”. In: ISPRS International Journal of Geo-Information 6.8 (2017), p. 243.

[123] Mordechai Haklay and Patrick Weber. “Openstreetmap: User-generated street

maps”. In: IEEE Pervasive computing 7.4 (2008), pp. 12–18.

126

https://doi.org/10.14358/PERS.72.8.923
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.17632/yrxvhfj5jv.1
https://doi.org/10.17632/yrxvhfj5jv.1
https://doi.org/10.17632/9thyzzwd5d.2

BIBLIOGRAPHY

[124] Vincent Van Altena et al. “Generalisation of a 1:10k map from municipal data”. In:

17th ICA Workshop on Generalisation and Multiple Representation, Vienna, Austria, 23

September 2014. 2014.

[125] Mátyás Pitlik. “Object recognition and change detection of buildings based on

airbone LiDAR”. https://edit.elte.hu/xmlui/handle/10831/46499. MSc

thesis. ELTE Eötvös Loránd University, Faculty of Informatics, 2019.

[126] EuroStat. Railway passenger transport statistics. Tech. rep. Oct. 2022. URL: https:

//ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_

passenger_transport_statistics_-_quarterly_and_annual_data.

[127] EuroStat. Railway freight transport statistics. Tech. rep. Oct. 2022. URL: https://

ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_

freight_transport_statistics.

[128] Lingli Zhu and Juha Hyyppa. “The use of airborne and mobile laser scanning for

modeling railway environments in 3D”. In: Remote Sensing 6.4 (2014), pp. 3075–

3100.

[129] Wang-Gyu Jeon and Eui-Myoung Kim. “Automated Reconstruction of Railroad

Rail Using Helicopter-borne Light Detection and Ranging in a Train Station”. In:

Sensors and Materials 31.10 (2019), pp. 3289–3302.

[130] Mostafa Arastounia and Sander Oude Elberink. “Application of template match-

ing for improving classification of urban railroad point clouds”. In: Sensors 16.12

(2016), p. 2112.

[131] Bisheng Yang and Lina Fang. “Automated extraction of 3-D railway tracks from

mobile laser scanning point clouds”. In: IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing 7.12 (2014), pp. 4750–4761.

[132] M. Neubert et al. “Extraction of railroad objects from very high resolution

helicopter-borne LiDAR and ortho-image data”. In: Int Arch Photogramm Remote

Sens Spat Inf Sci 38 (2008), pp. 25–30.

[133] Reinhard Beger et al. “Data fusion of extremely high resolution aerial imagery and

LiDAR data for automated railroad centre line reconstruction”. In: ISPRS Journal

of Photogrammetry and Remote Sensing 66.6 (2011), S40–S51.

[134] I. Puente et al. “Accuracy verification of the Lynx Mobile Mapper system”. In:

Optics & Laser Technology 45 (2013), pp. 578–586.

[135] Jens Kremer and Albrecht Grimm. “The RailMapper—A dedicated mobile LiDAR

mapping system for railway networks”. In: Int. Arch. Photogramm. Remote Sens.

Spat. Inf. Sci 39 (2012), p. 477.

127

https://edit.elte.hu/xmlui/handle/10831/46499
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_passenger_transport_statistics_-_quarterly_and_annual_data
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_passenger_transport_statistics_-_quarterly_and_annual_data
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_passenger_transport_statistics_-_quarterly_and_annual_data
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_freight_transport_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_freight_transport_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Railway_freight_transport_statistics

BIBLIOGRAPHY

[136] S. Oude Elberink et al. “Rail track detection and modelling in mobile laser scan-

ner data”. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences 2 (2013), pp. 223–228.

[137] Mostafa Arastounia. “Automatic classification of lidar point clouds in a railway

environment”. https://essay.utwente.nl/84784/1/arastounia.pdf. MSc

thesis. University of Twente, 2012.

[138] Milev Ivo, Studnicka Nikolaus, and Zach Gerald. “Rail infrastructure

Measurement System based on Riegl VMX-450 MLS”. In: Interexpo Geo-Siberia

(2012), pp. 75–86.

[139] Milev Ivo and Studnicka Nikolaus. “New developments in railway data collec-

tion with the Mobile Laser scanning system Riegl VMX-450 and subsequent post-

processing with technet-rail software SiRailScan”. In: Interexpo Geo-Siberia 1 (2013),

pp. 42–52.

[140] Michal Strach and Przemyslaw Grabias. “Application of laser scanning technol-

ogy for structure gauge measurement”. In: Open Geosciences 12.1 (2020), pp. 1653–

1665. DOI: doi:10.1515/geo-2020-0056.

[141] Máté Cserép. Hungarian MLS point clouds of railroad environment and annotated

ground truth data. Mendeley Data. DOI: 10.17632/ccxpzhx9dj.1. Apr. 2022. DOI:

10.17632/ccxpzhx9dj.1.

[142] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level Histograms”.

In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–66. DOI:

10.1109/TSMC.1979.4310076.

[143] Satoshi Suzuki and Keiichi Abe. “Topological structural analysis of digitized

binary images by border following”. In: Computer Vision, Graphics, and Image

Processing 30.1 (1985), pp. 32–46. ISSN: 0734-189X. DOI: 10.1016/0734-189X(85)

90016-7.

[144] Richard O. Duda and Peter E. Hart. “Use of the Hough Transformation to Detect

Lines and Curves in Pictures”. In: Commun. ACM 15.1 (Jan. 1972), pp. 11–15. ISSN:

0001-0782. DOI: 10.1145/361237.361242.

[145] John Canny. “A Computational Approach to Edge Detection”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986), pp. 679–

698. DOI: 10.1109/TPAMI.1986.4767851.

[146] D. H. Ballard. “Generalizing the Hough transform to detect arbitrary shapes”. In:

Pattern Recognition 13.2 (1981), pp. 111–122. ISSN: 0031-3203. DOI: 10.1016/0031-

3203(81)90009-1.

128

https://essay.utwente.nl/84784/1/arastounia.pdf
https://doi.org/doi:10.1515/geo-2020-0056
https://doi.org/10.17632/ccxpzhx9dj.1
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1145/361237.361242
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/0031-3203(81)90009-1
https://doi.org/10.1016/0031-3203(81)90009-1

BIBLIOGRAPHY

[147] Christoph Dalitz, Tilman Schramke, and Manuel Jeltsch. “Iterative Hough

Transform for Line Detection in 3D Point Clouds”. In: Image Processing On Line

7 (2017), pp. 184–196. DOI: 10.5201/ipol.2017.208.

[148] Kenneth S. Roberts. “A new representation for a line”. In: Proceedings CVPR’88:

The Computer Society Conference on Computer Vision and Pattern Recognition. IEEE

Computer Society. 1988, pp. 635–636.

[149] S. Hojjat and J Kittler. “Region Growing: A New Approach”. In: IEEE Transactions

on Image processing 7 (Feb. 1998), pp. 1079–84. DOI: 10.1109/83.701170.

[150] Shanxin Zhang et al. “Automatic Railway Power Line Extraction Using Mobile

Laser Scanning Data”. In: vol. XLI-B5. June 2016, pp. 615–619. DOI: 10 . 5194 /

isprs-archives-XLI-B5-615-2016.

[151] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and Automated

Cartography”. In: Commun. ACM 24.6 (June 1981), pp. 381–395. ISSN: 0001-0782.

DOI: 10.1145/358669.358692.

[152] Dénes Ertl. “Automatic rail tie recognition and error detection using LiDAR point

clouds”. https://gis.inf.elte.hu/wordpress/wp-content/uploads/2023/07/

ertl_denes_msc_compressed.pdf. MSc thesis. ELTE Eötvös Loránd University,

Faculty of Informatics, 2023.

[153] Endre Rónai. Railway overhead cables. Tech. rep. In Hungarian: Vasúti villamos fel-

sővezeték. Hungarian State Railways, 2009, p. 109.

129

https://doi.org/10.5201/ipol.2017.208
https://doi.org/10.1109/83.701170
https://doi.org/10.5194/isprs-archives-XLI-B5-615-2016
https://doi.org/10.5194/isprs-archives-XLI-B5-615-2016
https://doi.org/10.1145/358669.358692
https://gis.inf.elte.hu/wordpress/wp-content/uploads/2023/07/ertl_denes_msc_compressed.pdf
https://gis.inf.elte.hu/wordpress/wp-content/uploads/2023/07/ertl_denes_msc_compressed.pdf

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Thesis structure
	Authorship statement

	Revision management of vector data models
	Overview of revision control models and methods
	General revision control model on geospatial data
	The baseline model
	Data storage
	Linear control of revisions
	Branching and merging possibilities
	Distributed revision control
	Applications in cloud environment

	Implementation of geospatial revision control
	The AEGIS framework
	Revision control in AEGIS

	Results and performance analysis
	Storage efficiency
	Computation performance

	Conclusions

	Change analysis of buildings and vegetation in airborne point clouds
	Related work and background
	Classification of land cover
	Building segmentation
	Individual tree segmentation
	Change detection in point clouds
	Change detection of buildings
	Change detection of vegetation

	Dataset description
	Study area

	Methodology of building change detection
	Threshold filtering
	Detecting objects
	Changeset filtering
	Border reconstruction
	Algorithm summary
	Aggregation overview

	Methodology of vegetation change detection
	Producing canopy height models
	Low-pass filtering
	Elimination of low points
	Collecting local maximum points
	Interpolation of nodata points
	Tree crown segmentation
	Morphological filtering
	Cluster pairing
	Difference of tree heights
	Difference between tree volumes

	Implementation
	The PointCloudTools library
	Architecture of the Buildings module
	Architecture of the Vegetation module

	Results and performance
	Desktop environment
	Distributed computing

	Visualization of results
	Validation and discussion
	Validation of building detection
	Validation of vegetation detection

	Conclusions

	Recognition of railroad infrastructure in MLS point clouds
	Related work and background
	Segmentation of overhead cables and rails on open track
	Segmentation of railway infrastructure in complex environments
	Examination of the structure gauge

	Dataset description
	Methodology of infrastructure recognition
	Railroad fragmentation
	Cable recognition
	Rail recognition

	Results of infrastructure recognition
	Fragmentation results
	Object recognition results and verification

	Fault analysis of railroad infrastructure
	Structure gauge collision analysis
	Contact cable stagger analysis
	Railway bedding error analysis

	Implementation
	Conclusions

	Summary
	Results

	Building change detection workflow image collection
	Vegetation change detection workflow image collection
	Bibliography

